Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T00:26:31.321Z Has data issue: false hasContentIssue false

Balanced big Cohen-Macaulay modules and flat extensions of rings

Published online by Cambridge University Press:  24 October 2008

Santiago Zarzuela
Affiliation:
Departament d'Àlgebra i Fonaments, Universitat de Barcelona, Barcelona 08007, Spain

Extract

Let A be a (commutative, Noetherian) local ring. The big Cohen-Macaulay conjecture asserts that if a1,…,an is a system of parameters for A there exists an A-module M such that a1,…,an is an M-sequence. Then we say that M is a big Cohen-Macaulay module with respect to a1,…,an. This conjecture implies some important conjectures in commutative algebra and has been established affirmatively by M. Hochster for any ring containing a field as a subring (see [9] for further information).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bartijn, J. and Strooker, J. R.. Modifications monomiales. In Séminaire d'Algèbre Dubreil-Malliavin, Paris 1982, Lectures Note in Math. 1029 (Springer-Verlag, 1983), 192217.Google Scholar
[2]Foxby, H.-B.. On the µi in a minimal injective resolution II, Math. Scand. 41 (1977), 1944.CrossRefGoogle Scholar
[3]Foxby, H.-B.. Bounded complexes of flat modules. J. Pure Appl. Algebra 15 (1979), 149172.CrossRefGoogle Scholar
[4]Foxby, H.-B.. A homological theory of complexes of modules. Preprint Series, Matetnatisk Institut, Kobenhavns Universitet 19 (1981).Google Scholar
[5]Foxby, H.-B. and Thorup, A.. Minimal injective resolutions under flat base change. Proc. Amer. Math. Soc. 67 (1977), 2731.CrossRefGoogle Scholar
[6]Greco, S.. A note on universally catenary rings. Nagoya Math. J. 87 (1982), 95100.CrossRefGoogle Scholar
[7]Griffith, P.. A representation theorem for complete local rings. J. Pure Appl. Algebra 7 (1976), 305315.CrossRefGoogle Scholar
[8]Grothendieck, A. (with Dieudonné, J.). Eléments de Géometrie Algébrique, chap. 4. Inst. Hautes Etudes Sci. Publ. Math. 20 (1964) and 24 (1965).Google Scholar
[9]Hochster, M.. Big Cohen–Macaulay modules and algebras and embeddability in rings of Witt vectors. Proc. of the Queen's Univ. Commutative Algebra Conference (Kingston 1975). Queen's Papers in Pure and Appl. Math. 42 (1975), 106195.Google Scholar
[10]McAdam, S. and Ratliff, L. J. JrSemi-local taut rings. Indiana Univ. Math. J. 26 (1977), 7379.CrossRefGoogle Scholar
[11]Matsumura, H.. Commutative Algebra (Benjamin-Cummings, 1980).Google Scholar
[12]Nagata, M.. Local rings (Interscience Publishers, 1962).Google Scholar
[13]O'Carroll, L.. Balanced big Cohen–Macaulay modules and ring extensions. Proc. Roy. Soc. Edinburgh 99A (1984), 171172.Google Scholar
[14]Ogoma, T.. Fibre products of Noetherian rings and their applications. Math. Proc. Cambridge Philos. Soc. 97 (1985), 231341.CrossRefGoogle Scholar
[15]Ratliff, L. J.. Chain Conjectures in Ring theory. Lecture Notes in Math. 647 (Springer-Verlag, 1978).CrossRefGoogle Scholar
[16]Seydi, H.. Anneaux henseliens et conditions de chaînes. Bull. Soc. Math. France 98 (1970), 931.Google Scholar
[17]Sharp, R. Y.. Local cohomology theory in commutative algebra. Quart. J. Math. Oxford (2) 21 (1970), 425434.CrossRefGoogle Scholar
[18]Sharp, R. Y.. Cohen–Macaulay properties for balanced big Cohen–Macaulay modules. Math. Proc. Cambridge Philos. Soc. 90 (1981), 229238.CrossRefGoogle Scholar
[19]Sharp, R. Y.. A Cousin complex characterization of balanced big Cohen–Macaulay modules. Quart. J. Math. Oxford (2) 33 (1982), 471485.CrossRefGoogle Scholar
[20]Takeuchi, Y.. On localizations of a balanced big Cohen–Macaulay module. Kobe J. of Math. 1 (1984), 4346.Google Scholar