Skip to main content Accessibility help
×
Home

The frame of smashing tensor-ideals

  • PAUL BALMER (a1), HENNING KRAUSE (a2) and GREG STEVENSON (a3)

Abstract

We prove that every flat tensor-idempotent in the module category Mod- of a tensor-triangulated category comes from a unique smashing ideal in . We deduce that the lattice of smashing ideals forms a frame.

Copyright

References

Hide All
[Bal05] Balmer, P. The spectrum of prime ideals in tensor triangulated categories. J. Reine Angew. Math., 588 (2005), 149168.
[Bal10] Balmer, P. Tensor triangular geometry. In International Congress of Mathematicians, Hyderabad (2010), Vol. II. (Hindustan Book Agency, 2010), pages 85112.
[BD68] Bucur, I. and Deleanu, A. Introduction to the theory of categories and functors. With the collab. of Hilton, P. J. and Popescu, N. Pure and App. Math., Vol. XIX. (Interscience Publication John Wiley & Sons, Ltd., London-New York-Sydney, 1968).
[BD14] Boyarchenko, M. and Drinfeld, V. Character sheaves on unipotent groups in positive characteristic: foundations. Selecta Math. (N.S.), 20 (1) (2014), 125235.
[BF11] Balmer, P. and Favi, G. Generalised tensor idempotents and the telescope conjecture. Proc. Lond. Math. Soc. (3) 102 (6) (2011), 11611185.
[Bou79] Bousfield, A. K. The Boolean algebra of spectra. Comment. Math. Helv. 54 (3) (1979), 368377.
[Fre70] Freyd, P. Homotopy is not concrete. In The Steenrod Algebra and its Applications (Steenrod's Sixtieth Birthday Conf., Battelle Memorial Inst., Columbus, Ohio, 1970), Lecture Notes in Math. vol. 168, pages 2534 (Springer, Berlin, 1970).
[GZ67] Gabriel, P. and Zisman, M. Calculus of fractions and homotopy theory. Ergeb. Math. Grenzgeb., band 35 (Springer-Verlag, New York, 1967).
[Hop87] Hopkins, M. J. Global methods in homotopy theory. In Homotopy theory (Durham, 1985), volume 117 of London Math. Soc. Lect. Notes. pages 7396 (Cambridge University Press, 1987).
[HP99] Hovey, M. and Palmieri, J. H. The structure of the Bousfield lattice. In Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math. vol. 239 (Amer. Math. Soc., Providence, RI, 1999), pages 175196.
[HPS97] Hovey, M., Palmieri, J. H. and Strickland, N. P. Axiomatic stable homotopy theory. Mem. Amer. Math. Soc. 128 (610) (1997).
[Joh83] Johnstone, P. T. The point of pointless topology. Bull. Amer. Math. Soc. (N.S.) 8 (1983), 4153.
[Kra97] Krause, H. The spectrum of a locally coherent category. J. Pure Appl. Algebra 114 (3) (1997), 259271.
[Kra00] Krause, H. Smashing subcategories and the telescope conjecture–an algebraic approach. Invent. Math. 139 (1) (2000), 99133.
[Kra05] Krause, H. Cohomological quotients and smashing localisations. Amer. J. Math. 127 (6) (2005), 11911246.
[Nee01] Neeman, A. Triangulated categories. Annals of Math. Stud. vol. 148. (Princeton University Press, 2001).
[Ste16] Stevenson, G. A tour of support theory for triangulated categories through tensor triangular geometry. In Building Bridges Between Algebra and Topology (Birkhäuser, 2018), pp. 63101.
[Wol15] Wolcott, F. L. Variations of the telescope conjecture and Bousfield lattices for localised categories of spectra. Pacific J. Math. 276 (2) (2015), 483509.

The frame of smashing tensor-ideals

  • PAUL BALMER (a1), HENNING KRAUSE (a2) and GREG STEVENSON (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed