Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T22:58:34.180Z Has data issue: false hasContentIssue false

A functional equation technique for obtaining wiener process probabilities associated with theorems of Kolmogorov-Smirnov type

Published online by Cambridge University Press:  24 October 2008

J. Kiefer
Affiliation:
Cornell and Oxford Universities
D. V. Lindley
Affiliation:
Cornell and Oxford Universities

Extract

1. Introduction. Since the first proofs by Kolmogorov (13) and Smirnov ((14), (15)) of their well-known results on the limit distribution of the deviations of the sample distribution function, many alternative proofs of these results have been given. For example, we may cite the various approaches of Feller (4), Doob (3), Kac (8), Gnedenko and Korolyuk(7), and Anderson and Darling (1). The approaches of (3), (8) and (1) rest on a probabilistic computation regarding the Wiener process, and are justified by the paper of Donsker (2) (see also (11)). Of all these approaches, only those of (8) and (1) can be extended to obtain the limit distributions of the ‘k–sample’ generalizations of the Kolmogorov-Smirnov statistics suggested in (9), and the author ((9), (10)) and Gihman(6) carried out such proofs.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Andebson, T. W. and Darling, D.Asymptotic theory of certain ‘goodness of fit’ criteria based on stochastic processes. Ann. Math. Stat. 23 (1952), 193212.CrossRefGoogle Scholar
(2)Donskeb, M.Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 23 (1953), 277–81.CrossRefGoogle Scholar
(3)Doob, J. L.Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 20 (1949), 393403.CrossRefGoogle Scholar
(4)Feller, W.On the Kolmogorov-Smirnov limit theorems for empirical distributions. Ann. Math. Stat. 19 (1948), 177–89.CrossRefGoogle Scholar
(5)Fortet, R.Les Fonctions aléatoires du type de Markoff associées à certaines équations linéaires aux dérivées partielles du type parabolique. J. Math. pures appl. 22 (1943), 177243.Google Scholar
(6)Gihman, J. J.A k–sample test of homogeneity. Teorya Veryotnostei i yeyau primenyenya (1957), pp. 380–4.Google Scholar
(7)Gnedenko, B. V. and Korolyuk, V. S.On the maximum discrepancy between the em-pirical distributions. Dokl. Akad. Nuak. SSSR (N.S.), 80 (1951), 525–9.Google Scholar
(8)Kac, M.On some connections between probability theory and differential and integral equations. Proc. Second Berkeley Symp. (Berkeley, 1951), 180215.Google Scholar
(9)Kiefer, J.Distance tests with good power for the non-parametric k–sample problem. Ann. Math. Stat. 26 (1955), 775.Google Scholar
(10)Keeper, J.K–sample analogues of the Kolmogorov-Smirnov and Cramer-v. Mises Tests. Ann. Math. Stat. 30 (1959).Google Scholar
(11)Kiefer, J. and Wolfowitz, J.On the deviations of the empiric distribution function of vector chance variables. Trans. Amer. Math. Soc. 87 (1958), 173–86.CrossRefGoogle Scholar
(12)Lévy, P.Processus Stochastiques et Mouvement Brownien (Paris, 1948).Google Scholar
(13)Kolmogorov, A. N.Sulla determionazione empirica della leggi di probilita. Giorn. Ist. ital. Attuari, 4 (1933), 111.Google Scholar
(14)Smienov, N. V.On the estimation of the discrepancy between empirical curves of distribution of two independent samples. Bull. Math. Univ. Moscou, 2 (1939), fasc. 2.Google Scholar
(15)Smirnov, N. V.Approach of empirical distribution functions. Uspyekhi Matem. Nauk. 10 (1944), 179206.Google Scholar