[1]Bierstone, E.General position of equivariant maps. Trans. Amer. Mat. Soc. 234 (2) (1977), 447–466.
[2]Buono, P-L., Lamb, J. S. W and Roberts, M.Bifurcation and branching of equilibria in reversible equivariant vector fields. Nonlinearity 21 (2008), 625–660.
[3]Buchner, M., Marsden, J. and Schecter, S.Applications of the blowing-up construction and algebraic geometry to bifurcation problems. J. Diff. Eq. 48 (1983), 404–433.
[4]Field, M. J.Transversality in G-manifolds. Trans. Amer. Math. Soc. 231 (2) (1977), 429–450.
[5]Field, M. J. and Richardson, R.Symmetry-breaking and the maximal isotropy subgroup conjecture for reflection groups. Arch. Rat. Mech. Anal. 105 (1989), 61–94.
[6]Field, M. J.Symmetry-breaking for compact lie groups. Mem. Amer. Math. Soc. AMS. 574 (1996).
[7]Field, M. J.Dynamics and Symmetry ICP. Advanced Texts in Mathematics vol 3 (Imperial College Press, London, 2007).
[8]Furter, J.-E., Sitta, A. M. and Stewart, I.Singularity theory and equivariant bifurcation problems with parameter symmetry. Math. Proc. Camb. Phil. Soc. 120 (1996), 547–578.
[9]Gibson, C. G., Wirthmüller, K., Plessis, A. A. du and Looijenga, E. J. NTopological stability of smooth mappings. Lecture Notes in Mathematics vol 552 (Springer–Verlag 1976).
[10]Golubitsky, M., Marsden, J. E. and Schaeffer, D., Bifurcation problems with hidden symmetries. In Partial Differential Equations and Dynamical Systems (ed. W. E. Fitzgibbon). Res. Not. Math. 101. (Pitman, 1984).
[11]Golubitsky, M. and Schaeffer, D. G.A discussion of symmetry and symmetry breaking. In Singularities, Part 1 (Arcata, 1981) Proc. Sympos. Pure Math. 40 (Amer. Math. Soc., 1983).
[12]Golubitsky, M., Stewart, I. and Schaeffer, D. G.Singularities and Groups in Bifurcation Theory: Vol. II. Appl. Math. Sci. 69. (Springer-Verlag, 1988).
[13]Hambleton, I. and Lee, R.Perturbation of equivariant moduli spaces. Math. Ann. 293 (1992), 17–37.
[14]James, G. and Liebeck, M.Representations and Characters of Group (Cambridge University Press, 1993).
[15]Michel, L. Nonlinear group action: Smooth actions of compact Lie groups on manifolds. In Statistical Mechanics and Field Theory (Sen, R. N. and Weil, C., Eds). (Israel University Press, Jerusalem, 1972), 133–150.
[16]Ruelle, D.Bifurcations in the presence of a symmetry group. Arch. Rat. Mech. Anal. 51 (1973), 136–152.
[17]Sattinger, D. H.Branching in the presence of a symmetry group. CBMS-NSF Conference Notes. 40 (SIAM, Philadelphia, 1983).
[18]Stewart, I. and Dias, A. P.Hilbert series for equivariant mappings restricted to invariant hyperplanes. J. Pure Appl. Alg. 151 (2000), 89–106.
[19]van der Waerden, B. L.Algebra, vol 2. (Frederick Ungar Publishing Co., 1970).
[20]Worfolk, P. A.Zeros of equivariant vector fields: Algorithms for an invariant approach. J. Symb. Comp. 17 (1994), 487–511.