Skip to main content Accessibility help

One-sided multifractal analysis and points of non-differentiability of devil's staircases


We examine the multifractal spectra of one-sided local dimensions of Ahlfors regular measures on ${\bf R}$. This brings into a natural context a curious property that has been observed in a number of instances, namely that the Hausdorff dimension of the set of points of non-differentiability of a self-affine ‘devil's staircase’ function is the square of the dimension of the set of points of increase.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed