Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T15:14:23.450Z Has data issue: false hasContentIssue false

PERSISTENCE OF BEAUVERIA BASSIANA IN SOIL FOLLOWING APPLICATION OF CONIDIA THROUGH CROP CANOPIES

Published online by Cambridge University Press:  31 May 2012

G.D. Inglis
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Box Main, Lethbridge, Alberta, Canada T1J 4B1 and Centre for Pest Management, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
G.M. Duke
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Box Main, Lethbridge, Alberta, Canada T1J 4B1
P. Kanagaratnam
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Box Main, Lethbridge, Alberta, Canada T1J 4B1
D.L. Johnson
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Box Main, Lethbridge, Alberta, Canada T1J 4B1
M.S. Goettel
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Box Main, Lethbridge, Alberta, Canada T1J 4B1
Get access

Abstract

The influence of three formulations, water, oil, and a 5% oil emulsion, and two crops, alfalfa and crested wheatgrass, on the deposition and subsequent persistence of Beauveria bassiana (Balsamo) Vuillemin conidia in soil was investigated. The alfalfa canopy was considerably denser than that of wheatgrass. Leaf area indices for alfalfa ranged from 1.8 to greater than 2, those for wheatgrass ranged from 0.24 to 0.55. Initial populations of conidia averaged 1.2 × 103 to 2.6 × 104 colony-forming units (cfu) per gram of dry weight of soil under alfalfa, and 5.5 × 103 to 3.4 × 104 cfu per gram of soil under wheatgrass. There was no consistent influence of formulation or application method (high or ultra low volume) on penetration of conidia through the canopy of either crop. However, conidial populations under wheatgrass were larger than those under alfalfa in two of three trials. After 225–272 days (over winter), substantial populations (87 to 4.3 × 104 cfu/g) were recovered from soil. Although conidial densities decreased over time, reductions in population size over this period were generally less than one order of magnitude; neither crop nor formulation consistently influenced conidial persistence. In most instances, a rapid decrease in conidial populations was observed within approximately 20 days but thereafter, the rates of population decline abated. The initial decrease in conidial numbers did not appear to be related to precipitation. This study demonstrates that substantial numbers of B. bassiana conidia infiltrate crop canopies, are deposited on the soil surface, and subsequently persist in a clay–loam soil. The aerial application of B. bassiana conidia to vegetated roadsides may prove useful for the management of ovipositing grasshoppers and emerging nymphs.

Résumé

L'influence de trois types de préparations, dans de l'eau, dans de l'huile et dans une émulsion de 5% d'huile et de deux types de récolte, la luzerne et le chiendent à crête, sur la persistance des conidies de Beauveria bassiana (Balsamo) Vuillemin dans le sol a été évaluée. La couverture de luzerne était beaucoup plus dense que celle du chiendent. L'indice de surface du feuillage allait de 1,8 à plus de 2 dans le cas de la luzerne, alors que le même indice a été évalué à 0,24–0,55 dans le cas du chiendent. Les populations initiales de conidies contenaient en moyenne de 1,2 × 104 à 2,6 × 104 unités formant des colonies (cfu) par gramme de masse sèche de sol sous la luzerne, et de 5,5 × 103 à 3,4 × 104 cfu par gramme de sol sous le chiendent. Il n'y avait pas d'effet défini de la préparation ou de la méthode d'application (volume élevé ou ultrafaible) sur la pénétration des conidies à travers la couverture des deux types de plantes. Cependant, les populations de conidies sous le chiendent se sont avérées plus importantes que celles évaluées sous la luzerne dans deux des trois tests. Après 225–272 jours (l'hiver), des populations importantes (87 à 4,3 × 10 cfu/g) ont été trouvées dans le sol. Bien que les densités de conidies aient diminué avec le temps, les réductions enregistrées au cours de cette période étaient généralement inférieures à un ordre de grandeur; ni le type de récolte, ni le type de préparation n'ont influencé systématiquement la persistance des conidies. Dans la plupart des cas, un déclin important des populations de conidies a été enregistré en moins de 20 jours environ, mais, par la suite, les populations se sont stabilisées. La diminution initiale du nombre de conidies ne semblait pas reliée aux précipitations. Cette recherche a démontré que des nombres importants de conidies de B. bassiana s'infiltrent sous la couverture des récoltes, tombent à la surface du sol et continuent de vivre dans les sols argileux–glaiseux. La pulvérisation aérienne de conidies de B. bassiana sur les plantes en bordure des routes peut éventuellement s'avérer une bonne méthode de lutte contre les femelles pondeuses de criquets et contre les larves qui émergent. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Author to whom correspondence should be addressed.

References

Chase, A.R., Osborne, L.S. and Ferguson, V.M.. 1986. Selective isolation of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae from an artificial potting medium. Florida Entomologist 69: 285292.Google Scholar
Criddle, N. 1918. The egg-laying habits of some of the Acrididae (Orthoptera). The Canadian Entomologist 50: 145151.Google Scholar
Criddle, N. 1933. Notes on the habits of injurious grasshoppers in Manitoba. The Canadian Entomologist 65: 97102.Google Scholar
Daoust, R.A. and Pereira, R.M.. 1986. Stability of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae on beetle-attracting tubers and cowpea foliage in Brazil. Environmental Entomology 15: 12371243.Google Scholar
Fargues, J., Reisinger, O., Robert, P.H. and Aubart, C.. 1983. Biodegradation of entomopathogenic hyphomycetes: Influence of clay coating on Beauveria bassiana blastospore survival in soil. Journal of Invertebrate Pathology 41: 131142.Google Scholar
Feng, M.G., Poprawski, T.J. and Khachatourians, G.G.. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology 4: 334.Google Scholar
Gaugler, R., Costa, S.D. and Lashomb, J.. 1989. Stability and efficacy of Beauveria bassiana soil inoculations. Environmental Entomology 18: 412417.Google Scholar
Harrison, R.D., Rhodes, D.J. and Foundling, J.. 1992. Population dynamics of Beauveria bassiana in the soil: Quantification of conidia. Proceedings of the Society for Invertebrate Pathology, Heidlberg 25: 253 (Abstract).Google Scholar
Inglis, G.D., Feniuk, R.P., Goettel, M.S. and Johnson, D.L.. 1995. Mortality of grasshoppers exposed to Beauveria bassiana during oviposition and nymphal emergence. Journal of Invertebrate Pathology 65: 139146.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1993. Persistence of the entomopathogenic fungus, Beauveria bassiana, on phylloplanes of crested wheatgrass and alfalfa. Biological Control 3: 258270.Google Scholar
Janzen, H.H. 1987. Soil organic matter characteristics after long term cropping to various spring wheat rotations. Canadian Journal of Soil Science 67: 845856.Google Scholar
Johnson, D.L. 1989. Spatial autocorrelation, spatial modeling, and improvements in grasshopper survey methodology. The Canadian Entomologist 121: 579588.Google Scholar
Lingg, A.J. and Donaldson, M.D.. 1981. Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. Journal of Invertebrate Pathology 38: 191200.Google Scholar
Muller-Kogler, E. and Zimmennann, G.. 1986. Zur lebensdauer van Beauveria bassiana in kontaminiertem boden unter freiland-und laboratoriumsbedingungen. Entomophaga 31: 285292.Google Scholar
SAS Institute. 1988. SAS/Stat User's Guide, Release 6.03 ed. SAS Institute Inc., Cary, NC. 1028 pp.Google Scholar
Storey, G.K. and Gardner, W.A.. 1987. Vertical movement of commercially formulated Beauveria bassiana conidia through four Georgia soil types. Environmental Entomology 16: 178181.Google Scholar
Storey, G.K. and Gardner, W.A.. 1988. Movement of an aqueous spray of Beauveria bassiana into the profile of four Georgia soils. Environmental Entomology 17: 135139.Google Scholar
Storey, G.K., Gardner, W.A., Hamm, J.J. and Young, J.R.. 1987. Recovery of Beauveria bassiana propagules from soil following application of formulated conidia through an overhead irrigation system. Journal of Entomological Science 22: 355357.Google Scholar
Storey, G.K., Gardner, W.A. and Tollner, E.W.. 1989. Penetration and persistence of commercially formulated Beauveria bassiana conidia in soil of two tillage systems. Environmental Entomology 18: 835839.Google Scholar
Studdert, J.P., Kaya, H.K. and Duniway, J.M.. 1990. Effect of water potential, temperature, and clay coating on survival of Beauveria bassiana conidia in a loam and peat soil. Journal of Invertebrate Pathology 55: 417427.Google Scholar