Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-04T09:30:22.924Z Has data issue: false hasContentIssue false

The behavior of arsenic trioxide in non-ferrous extractive metallurgical processing

Published online by Cambridge University Press:  14 May 2014

M. Sadegh Safarzadeh
Affiliation:
Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701-3995, US. e-mail: sadegh.safarzadeh@sdsmt.edu
J.D. Miller
Affiliation:
Department of Metallurgical Engineering, College of Mines and Earth Sciences, University of Utah, 135 South 1460 East, Room 412, William C. Browning Building, Salt Lake City, UT 84112-0114, US; e-mail: jan.miller@utah.edu
H.H. Huang
Affiliation:
Department of Metallurgical and Materials Engineering, Montana Tech of The University of Montana, 215 ELC Building, 1300 West Park Street, Butte, MT 59701-8997, US; e-mail: hhuang@mtech.edu
Get access

Abstract

Study of the acid bake-leach process has shown potential advantages for the treatment of enargite (Cu3AsS4) concentrates. Among the most important advantages of the process is the transformation of enargite to water-soluble copper sulfate and highly soluble arsenic trioxide (arsenolite). Because arsenic is retained in the condensed phase during the baking, the vapor pressure of arsenic trioxide should be estimated at typical baking temperatures (e.g. 473 K). To that end, the vapor pressure of As4O6 (g) was estimated under the baking conditions based on published thermodynamic values. The vapor pressure of arsenolite at 473 K was found to be approximately 9.03 × 10-4 atm. Based on the linear regression analysis of the published vapor pressure values for arsenolite in the temperature range 366−579 K, the equation for the best fit line was found to be as follows, with a correlation coefficient of 0.9973:

logPArsenolite (atm) = (-5780.7)/(T (K))+9.16.

Available information on arsenic trioxide does not allow a definite conclusion regarding the arsenolite/claudetite transformation temperature and their exact melting points. However, the transition temperature has been reported to be in the wide range of 240−506 K in different references. Furthermore, the thermodynamic information concerning arsenolite/claudetite is sparse and at times not consistent. An effort has been made in this paper to compile the most reliable thermodynamic information for arsenic trioxide (arsenolite and claudetite).

Type
Research Article
Copyright
© EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Landsberg, J.E. Mauser, J.L. Henry, Behavior of Arsenic in a Static Bed during Roasting of Copper Smelter Feed, United States Bureau of Mines, RI 8493, 1980
M.S., Safarzadeh, M.S., Moats, J.D., Miller, Miner. Process. Extr. Metall. Rev. 35 (2014) 283-367
Safarzadeh, M.S., Moats, M.S., Miller, J.D., Miner. Process. Extr. Metall. Rev. 35 (2014) 390-422
Safarzadeh, M.S., Moats, M.S., Miller, J.D., Hydrometallurgy 119-120 (2012) 30-39
M.S., Safarzadeh, M.S., Moats, J.D., Miller, Miner. Metall. Process. 29 (2012) 97-102
M.S. Safarzadeh, M.S. Moats, J.D. Miller, SME Annual Meeting, Seattle, Washington, USA, Preprint Number 12-068, 2012
F., Cuypers, C., De Dobbelaere, A., Hardy, M.K., Van Bael, L., Helsen, J. Hazard. Mater. 166 (2009) 1238-1243
K.K. Kelley, Contributions to the Data on Theoretical Metallurgy, US Bureau of Mines, Bulletin 383, 1935
Schulman, J.H., Schumb, W.C., J. Am. Chem. Soc. 65 (1943) 878-883
Rushton, E.R., Daniels, F., J. Am. Chem. Soc. 48 (1926) 384-389
H.V. Welch, L.H. Duschak, The Vapor Pressure of Arsenic Trioxide, United States Bureau of Mines, Technical Paper 81, 1915
I. Barin, Thermochemical Data of Pure Substances, VCH Verlags-gesellschaft GmbH, Weinheim, Germany, 1989
Committee on Medical and Biological Effects of Environmental Pollutants, National Research Council: Arsenic: Medical and Biological Effects of Environmental Pollutants, Natl. Acad. Sci., Washington D.C., USA, 1977
Becker, K.A., Karger, H., Stranski, I.N., Zeitschrift für Physikalische Chemie Neue Folge 44 (1965) 1
Pertlik, F., Monatshefte für Chemie 106 (1975) 755
F., Pertlik, Czechoslovak J. Phys. 28 (1978) 170
Pertlik, F., Monatshefte für Chemie 109 (1978) 277
F. Wells, Structural Inorganic Chemistry, 5th edn., Clarendon Press, Oxford, UK, 1984
J.W. Mellor, Modern Inorganic Chemistry, Longmans, Green and Co., London, UK, 1922
N., Štrabac, I., Mihajlovic, D., Minic, D., Živkovic, Z., Živkovic, J. Min. Metall. 45 (2009) 59-67
R.H. Perry, C.H. Chilton, Chemical Engineers’ Handbook, 5th edn., McGraw-Hill, New York, USA, 1973
R.C. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., Ohio, USA, 1970
Behrens, R.G., Rosenblatt, G.M., J. Chem. Thermodynamics 4 (1972) 175-190
Ogusu, K., Hosokawa, Y., Maeda, S., Minakata, M., Li, H., J. Non-Crystall. Solids 351 (2005) 3132-3138
Landolt-Börnstein: Thermodynamic Properties of Inorganic Materials, Scientific Group Thermodata Europe (SGTE), Springer-Verlag, Berlin-Heidelberg, Germany, 1999
L., Helsen, E., Van den Bulck, Van Bael, M.K., Mullens, J., J. Anal. Appl. Pyrolysis 68 (2003) 613-633
C. Duval, Inorganic Thermogravimetric Analysis, 2nd and revised version, Elsevier, Amsterdam, The Netherlands, 1963, pp. 425
R.H. Perry, C.H. Chilton, Chemical Engineers’ Handbook, 7th ed., McGraw-Hill, New York, USA, 1997
P., Drahota, M., Filippi, Environ. Intl. 35 (2009) 1243-1255.
D.K. Nordstrom, D.G. Archer, Arsenic thermodynamic data and environmental geochemistry, Arsenic in Ground Water, A.H. Welch and K.G. Stollenwerk (Eds.), Kluwer Academic Publishers, Boston, Massachusetts, USA, 2003
Pokrovski, G., Gout, R., Schott, J., Zotov, A., Harrichoury, J., Geochim. Cosmochim. Acta 60 (1996) 737-749
R.A. Robie, B.S. Hemingway, J.R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, U.S. Geological Survey, Bulletin 1452, 1979
L.B. Pankratz, Thermodynamic Properties of Elements and Oxides, US Bureau of Mines, Bulletin 672, 1982
D.C. Lynch, Arsenic Metallurgy: Fundamentals and Applications, The Metallurgical Society, Montreal, Canada, 1988, pp. 3-32
K.A., Becker, K., Plieth, I.N., Stranski, Prog. Inorg. Chem. 4 (1962) 1
G.A., Brooks, W.J., Rankin, N.B., Gray, Metall. Mater. Trans. 25 (1994) 873-884
A. Gonzalez, E. Balladares, R. Parra, M. Sanchez, Proceedings of Yazawa International Symposium, Vol. II: High-temperature Metals Production, TMS, 2003, pp. 625-642
G. Niederschulte, Über den Dampfdruck Fester Körper, Dissertation, Erlangen University, Germany, 1903
K. Stelzner, Über den Dampfdruck Fester Körper, Dissertation, Erlangen University, Germany, 1901
D.L. Kaiser, Construction of Vapor Pressure/stability Diagrams for the As-S-O, Sb-S-O, and Bi-S-O Systems and Applications to Impurity Removal during Roasting, MSc. Thesis, Colorado School of Mines, Golden, Colorado, USA, 1980, pp. 47-69
T. Li, J.P. Hager, New Chemistry for the Recovery and Separation of Arsenic and Antimony, The Reinhardt Schuhmann International Symposium on Innovative Technology and Reactor Design in Extraction Metallurgy, D.R. Gaskell, J.P. Hager, J.E. Hoffmann, and P.J. Mackey (Eds.), AIME, 1986, pp. 845-868
Karutz, I., Stranski, I.N., Zeitschrift für Anorganische und Allgemeine Chemie 292 (1957) 330-342
A., Lisak, K., Fitzner, J. Phase Equil. 15 (1994) 151-154
J.J., Murray, R.F., Pottie, Can. J. Chem. 52 (1974) 557-563
A. Roine, HSC Chemistry 5.1, Outokumpu Research Oy, Espoo, 1994
V.P. Glushko, Thermocenter of Russian Academy of Sciences, IVTAN Association, Moscow, Russia, 1994