Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T05:48:44.754Z Has data issue: false hasContentIssue false

Advancing the Hexapole Cs-Corrector for the Scanning Transmission Electron Microscope

Published online by Cambridge University Press:  11 October 2006

Heiko Müller
Affiliation:
Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
Stephan Uhlemann
Affiliation:
Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
Peter Hartel
Affiliation:
Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
Maximilian Haider
Affiliation:
Corrected Electron Optical Systems GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
Get access

Abstract

Aberration correctors using hexapole fields have proven useful to correct for the spherical aberration in electron microscopy. We investigate the limits of the present design for the hexapole corrector with respect to minimum probe size for the scanning transmission electron microscope and discuss several ways in which the design could be improved by rather small and incremental design changes for the next generation of advanced probe-forming systems equipped with a gun monochromator.

Type
Research Article
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Delby, N., Krivanek, O.L., Murfitt, M.F., & Nellist, P.D. (2005). Design and testing of a quadrupole/octupole C3/C5 aberration corrector. Microsc Microanal 11(Suppl. 2), 21302131.Google Scholar
Erni, R., Freitag, B., Hartel, P., Müller, H., Tiemeijer, P., van der Stam, M., Stekelenburg, M., Hubert, D., Specht, P., & Garibay-Febles, V. (2006). Atomic scale analysis of planar defects in polycrystalline diamond. Microsc Microanal 12, 492497.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Haider, M., Uhlemann, S., & Zach, J. (2000). Upper limits for residual aberrations for a high-resolution aberration corrected STEM. Ultramicroscopy 81, 163175.Google Scholar
Hartel, P., Müller, H., Uhlemann, S., & Haider, M. (2004). Residual aberrations of hexapole-type Cs-correctors. In Proceedings of the 13th European Microscopy Congress, Van Dyck, D. & Oostveldt, P. (Eds.), vol. I, pp. 4142. Antwerp: The Belgian Society for Microscopy.
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J.H., Doole, R.C., Hetherington, C.J.D., Kirkland, A.I., & Sawada, H. (2005). A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103, 715.Google Scholar
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.
Krivanek, O.L., Dellby, N., & Lupini, A.R. (1999). Towards sub-Å electron beams. Ultramicroscopy 78, 111.Google Scholar
Krivanek, O.L., Nellist, P.D., Dellby, N., Murfitt, M.F., & Szilagyi, Z. (2003). Towards sub-0.5Å electron beams. Ultramicroscopy 96, 229237.Google Scholar
Müller, H., Uhlemann, S., Hartel, P., & Haider, M. (2005). Optical design, simulation and alignment of present-day and future aberration correctors for the transmission electron microscope. In Proceedings of the Microscopy Conference (6th Dreiländertagung), p. 6. Davos: Paul Scherrer Institut.
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., Jr., & Pennycook, S.J. (2004). Direct sub-Ångstrom imaging of a crystal lattice. Science 305, 1741.Google Scholar
Rose, H. (1971). Abbildungseigenschaften sphärisch korrigierter elektronenoptischer Achromate. Optik 33, 124.Google Scholar
Rose, H. (2002). Advances in electron optics. In High-Resolution Imaging and Spectrometry of Materials, Ernst, F. & Rühle, M. (Eds.), pp. 189270. Berlin: Springer-Verlag.
Rose, H. (2004). Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Nucl Instrum Methods A 519, 1227.Google Scholar
Shao, Z. (1988). On the fifth-order aberration in a sextupole corrected probe-forming system. Rev Sci Instrum 59, 24292437.Google Scholar
Uhlemann, S. & Haider, M. (2002). Experimental set-up of a fully electrostatic monochromator for a 200-kV TEM. In Proceedings of the 15th International Congress on Electron Microscopy, Engelbrecht, J., Sewell, T., Witcomb, M., Cross, R. & Richards, P. (Eds.), vol. I, pp. 327328. Durban: Microscopy Society of Southern Africa.