Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-16T00:17:08.487Z Has data issue: false hasContentIssue false

Analytical Formulae for Calculation of X-Ray Detector Solid Angles in the Scanning and Scanning/Transmission Analytical Electron Microscope

Published online by Cambridge University Press:  22 May 2014

Nestor J. Zaluzec*
Argonne National Laboratory, Electron Microscopy Center, Argonne, IL 60440, USA
*Corresponding author.
Get access


Closed form analytical equations used to calculate the collection solid angle of six common geometries of solid-state X-ray detectors in scanning and scanning/transmission analytical electron microscopy are presented. Using these formulae one can make realistic comparisons of the merits of the different detector geometries in modern electron column instruments. This work updates earlier formulations and adds new detector configurations.

Techniques and Instrumentation Development
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Argonne National Laboratory. (2010). High collection efficiency X-ray spectrometer system with integrated electron beam stop, electron detector and X-ray detector for use on electron-optical beam lines and microscopes, US Patent 8,314,386,, Argonne, IL, USA.Google Scholar
Conway, J.T. (2010). Analytical solution for the solid angle subtended at any point by an ellipse via a point source radiation vector potential. Nucl Instr Meth Phys Res A 614, 1727.CrossRefGoogle Scholar
Egerton, R.F. & Cheng, S.C. (1994). Characterization of an analytical electron microscopy with a NiO test specimen. Ultramicroscopy 55, 4354.CrossRefGoogle Scholar
Fitzgerald, R., Keil, K. & Heinrich, K.F.J. (1968). Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis. Science 159(3814), 528530.CrossRefGoogle ScholarPubMed
Gatti, E. & Rehak, P. (1984). Semiconductor drift chamber – An application of a novel charge transport scheme. Nucl Instr Meth A 225, 608614.CrossRefGoogle Scholar
Iwanczyk, J.S., Barkan, S., Saveliev, V.D., Tull, C.R., Feng, L., Patt, B.E., Newbury, D.E., Small, J.A. & Zaluzec, N.J. (2005). Large area silicon multi-cathode detector developments for microanalysis and high speed elemental mapping. Microsc Microanal 11(S2), 454455.CrossRefGoogle Scholar
Ketek. (2013). On-line technical specifications. Ketek Product Brochures, München, Germany. Available at Google Scholar
Knoll, G.F. (1999). Radiation Detection and Measurement, 3rd ed. chapters 12 and 13. Hoboken, NJ, USA: John Wiley & Sons.Google Scholar
Lorimer, G.W., Razik, N.A. & Cliff, G. (1973). The use of the analytical electron microscope EMMA-4 to study the solute distribution in thin foils: Some applications to metals and minerals. J Microsc 99, 153164.CrossRefGoogle Scholar
Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., Von Harrach, S., Nicholls, A.W. & Statham, P.J. (1994). High-performance X-ray detection in a new analytical electron microscope. J Microsc 176, 8598.CrossRefGoogle Scholar
Moxtek. (2013). On-line technical specifications. Moxtek Product Brochure, Orem, UT, USA. Available at Google Scholar
Niculae, A., Bornschlegl, M., Eckhardt, R., Herrmann, J., Jaritschin, O., Lechner, P., Liebel, A., Soltau, H., Schaller, G., Schopper, F. & Strüder, L. (2011). New design and measurements with 60 mm2 Rococo2 SDD detectors. Microsc Microanal 17(Suppl 2), 12061207.CrossRefGoogle Scholar
PN Detector. (2013). On-line technical specifications. PN Detector Product Brochure, München, Germany. Available at Google Scholar
Soltau, H., Jaratschin, O., Liebl, A., Niculae, A., Smsek, A., Echhard, R., Hermenau, K., Lechner, P., Lutz, G., Schaller, G., Schopper, F. & Struder, L. (2009). New detector architecture for electron microscopes with SDDs. Microsc Microanal 15(S2), 204205.CrossRefGoogle Scholar
Tordoff, B., Beam, S., Schweitzer, M., Hill, E., Kugler, V. & Png, K. (2012). Introducing twin X-ray detectors and fast backscattered electron imaging through a new field emission SEM from Carl Zeiss. Proceedings of EMC-2012, Manchester, September, PS2.2.Google Scholar
von Harrach, H.S., Dona, P., Freitag, B., Soltau, H., Niculae, A. & Rohde, M. (2009). An integrated silicon drift detector system for FEI Schottkey Field Emission Transmission Electron Microscopes. Microsc Microanal 15(S2), 208209.CrossRefGoogle Scholar
Watanabe, M. & Wade, C.A. (2013). Practical measurement of X-ray detection performance of a large solid-angle silicon drift detector in an aberration-corrected STEM. Microsc Microanal 19(Suppl 2), 12641265.CrossRefGoogle Scholar
Zaluzec, N.J. (1978). Optimizing conditions for X-ray microchemical analysis in analytical electron microscopy. Proceedings of the Ninth International Congress on Electron Microscopy, Toronto, vol. 1, pp. 548–549.CrossRefGoogle Scholar
Zaluzec, N.J. (2009 a). Innovative instrumentation for analysis of nanoparticles: The π steradian detector. Microscopy Today 17(4), 5659. doi:10.1017/S1551929509000224.CrossRefGoogle Scholar
Zaluzec, N.J. (2009 b). Detector solid angle formulas for use in X-ray energy dispersive spectrometry. Microsc Microanal 15, 9398.CrossRefGoogle ScholarPubMed
Zaluzec, N.J. (2013 a). Direct comparison of X-ray detector solid angles in analytical electron microscopes. Microsc Microanal 19(Suppl 2), 12621263.CrossRefGoogle Scholar
Zaluzec, N.J. (2013 b). An on-line web-based program to perform these solid angle calculations is available without charge. Available at Accessed December 2013.Google Scholar
Zaluzec, N.J. (2014). XEDS in the AEM: Has everything thing that can be invented, been invented? Microsc Microanal 20(Suppl 2).CrossRefGoogle Scholar
Zaluzec, N.J., Kenik, E.A. & Bentley, J. (1978). X-ray microanalysis using an HVEM, Report of a Specialist Workshop on Analytical Electron Microscopy, Ithaca, NY, pp. 179–182.Google Scholar