Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:12:59.377Z Has data issue: false hasContentIssue false

Analytical STEM Investigations of Nozzle Vane Surfaces after Turbine Engine Operation

Published online by Cambridge University Press:  30 July 2021

Radosław Swadźba*
Affiliation:
Łukasiewicz Research Network, Institute for Ferrous Metallurgy, 44-100 Gliwice, Poland
Bogusław Mendala
Affiliation:
Materials Science Department, Silesian University of Technology, 40-019 Katowice, Poland
Ondřej Dvořáček
Affiliation:
PBS Velká Bíteš, a.s., Velká Bíteš, Czech Republic
*
*Corresponding author: Radosław Swadźba, E-mail: rswadzba@imz.pl
Get access

Abstract

The scope of this work includes detailed microstructural investigations using high-resolution scanning transmission electron microscopy of the oxide scales and deposits formed on nozzle ring vanes made of IN713LC alloy during the operation of an auxiliary power unit under real conditions. The paper presents the differences of oxidation processes between the suction and the pressure sides of the vanes. It has been shown that in the pressure side of the vane, where a greater flow of exhaust gases from the combustion chamber is present, the oxidation process is accompanied by a deposition of among others (i.a.) Fe, Mg, Ca, Na, and P, while on the suction side of the vane, the thermal stresses and the mechanical loading most likely lead to a cracking of the oxide scale. A segregation of Cr, Ni, Ta, and Ti to the boundaries of α-Al2O3 grains is observed, which may indicate their diffusion from a metal to a gas atmosphere.

Type
The XVIIth International Conference on Electron Microscopy (EM2020)
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abegglen, M, Brem, BT, Ellenrieder, M, Durdina, L, Rindlisbacher, T, Wang, J, Lohmann, U & Sierau, B (2016). Chemical characterization of freshly emittedparticulate matter from aircraft exhaust using single particle massspectrometry. Atmos Environ 134, 181197.CrossRefGoogle Scholar
Alvarado-Orozco, JM, Morales-Estrella, R, Boldrick, MS, Trapaga-Martinez, G, Gleeson, B & Munoz-Saldana, J (2014). Kinetic study of the competitive growth between θ-Al2O3 and α-Al2O3 during the early stages of oxidation of β-(Ni,Pt)Al bond coat systems: Effects of Low oxygen partial pressure and temperature. Metall Mater Trans A 46(2), 726738.CrossRefGoogle Scholar
Birks, N, Meier, GH & Pettit, FS (2006). Introduction to the High-Temperature Oxidation of Metals, 2nd ed. New York: Cambridge University Press.CrossRefGoogle Scholar
Boll, T, Unocic, KA, Pint, BA & Stiller, K (2017). Interfaces in oxides formed on NiAlCr doped with Y, Hf, Ti, and B. Microsc Microanal 23(2), 396403.CrossRefGoogle ScholarPubMed
Chyrkin, A, Mortazavi, N, Halvarsson, M, Grüner, D & Quadakkers, WJ (2015). Effect of thermal cycling on protective properties of alumina scale grown on thin haynes 214 foil. Corros Sci 98, 688698.CrossRefGoogle Scholar
Chyrkin, A, Swadźba, R, Pillai, R, Galiullin, T, Wessel, E, Grüner, D & Quadakkers, WJ (2018). Stability of external α-Al2O3 scales on alloy 602 CA at 1100–1200 °C. Oxid Met 90(1–2), 119133.CrossRefGoogle Scholar
Doychak, J & Rühle, M (1989). TEM studies of oxidized NiAl and Ni3Al cross sections. Oxid Met 31(5–6), 431452.CrossRefGoogle Scholar
Doychak, J, Smialek, JL & Barrett, CA (1988). Oxidation of Ni-Rich Ni-Al intermetallics. In Oxidation of High-Temperature lntermetallics, Grobstein, T & Doychak, J (Eds.), pp. 4155. Warrendale, PA: TMS.Google Scholar
Doychak, J, Smialek, JL & Mitchell, TE (1989). Transient oxidation of single-crystal β-NiAl. Metall Trans A 20(3), 499518.CrossRefGoogle Scholar
Ebach-Stahl, A, Schulz, U, Swadźba, R & Munawar, AU (2021). Lifetime improvement of EB-PVD 7YSZ TBCs by doping of Hf or Zr in NiCoCrAlY bond coats. Corros Sci 181, 109205.CrossRefGoogle Scholar
Evans, A, Clarke, D & Levi, C (2008). The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc 28(7), 14051419.CrossRefGoogle Scholar
Fushimi, A, Saitoh, K, Fujitani, Y & Takegawa, N (2019). Identification ofjet lubrication oil as a major component of aircraft exhaust nanoparticles. Atmos Chem Phys 19(9), 63896399.CrossRefGoogle Scholar
Heuer, AH, Hovis, DB, Smialek, JL & Gleeson, B (2011). Alumina scale formation: A New perspective. J Am Ceram Soc 94, s146s153.CrossRefGoogle Scholar
Heuer, AH, Nakagawa, T, Azar, MZ, Hovis, DB, Smialek, JL, Gleeson, B, Hine, NDM, Guhl, H, Lee, H-S, Tangney, P, Foulkes, WMC & Finnis, MW (2013). On the growth of Al2O3 scales. Acta Mater 61(18), 66706683.CrossRefGoogle Scholar
Hou, PY (2008). Segregation phenomena at thermally grown Al2O3 / alloy interfaces. Annu Rev Mater Res 38(1), 275298.CrossRefGoogle Scholar
Jedlinski, J & Borchardt, G (1991). On the oxidation mechanism of alumina formers. Oxid Met 36(3–4), 317337.CrossRefGoogle Scholar
Jedliński, J, Gołdyn, R, Grosseau-Poussard, JL, Bonnet, G, Kowalski, K, Bernasik, A, Smoła, G, Dąbek, J & Nocuń, M (2017). Oxide phases and residual stresses in scales formed at early stages of oxidation of β-NiAl at 1473K and the effect of implanted yttrium. Mater Corros 68(2), 235248.CrossRefGoogle Scholar
Molins, R & Andrieu, E (1993). Analytical TEM study of the oxidation of nickel based superalloys. J Phys IV 03(C9), C9-469C9-475.Google Scholar
Nijdam, TJ & Sloof, WG (2006). Combined pre-annealing and pre-oxidation treatment for the processing of thermal barrier coatings on NiCoCrAlY bond coatings. Surf Coat Technol 201(7), 38943900.CrossRefGoogle Scholar
O'Neill, HSC & Navrotsky, A (1984). Cation distributions and thermodynamic properties of binary spinel solid solutions. Am Mineral 69(7–8), 733753.Google Scholar
Pieraggi, B & Dabosi, F (1987). High temperature oxidation of a single crystal Ni-base superalloy. Mater Corros 38, 584590.CrossRefGoogle Scholar
Pint, BA, More, KL & Wright, IG (2003). Effect of quaternary additions on the oxidation behavior of Hf-doped NiAl. Oxid Met 59(3-4), 257283.CrossRefGoogle Scholar
Pint, BA & Unocic, KA (2012). Ionic segregation on grain boundaries in thermally grown alumina scales. Mater High Temp 29(3), 257263.CrossRefGoogle Scholar
Rybicki, GC & Smialek, JL (1989). Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl+Zr. Oxid Met 31(3–4), 275304.CrossRefGoogle Scholar
Smialek, J, Garg, A, Gabb, T & MacKay, R (2015). Cyclic oxidation of high Mo, reduced density superalloys. Metals 5(4), 21652185.CrossRefGoogle Scholar
Smialek, JL, Archer, FA & Garlick, RG (1994). Turbine airfoil degradation in the Persian gulf war. JOM 46(12), 3941.CrossRefGoogle Scholar
Smialek, JL, Barrett, CS & Schaeffer, JC (2018). Design for oxidation. In ASM Handbook, Volume 20: Design for Properties, Dieter, GE (Ed.), pp. 589602. Materials Park, OH: ASM International.Google Scholar
Smialek, JL & Meier, GH (1987). High temperature oxidation. In Superalloys II, Sims, CT, Stoloff, NS & Hagel, WC (Eds.), pp. 293326. New York, NY, USA: Wiley and Sons.Google Scholar
Spitsberg, I & More, K (2006). Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats. Mater Sci Eng A 417(1–2), 322333.CrossRefGoogle Scholar
Swadźba, R (2018). Interfacial phenomena and evolution of modified aluminide bondcoatings in thermal barrier coatings. Appl Surf Sci 445, 133144.CrossRefGoogle Scholar
Swadźba, R, Swadźba, L, Wiedermann, J, Hetmańczyk, M & Witala, B (2014 a). Characterization of alumina scales grown on a 2nd generation single crystal Ni superalloy during isothermal oxidation at 1050, 1100 and 1150 °C. Oxid Met 82(3–4), 195208.CrossRefGoogle Scholar
Swadźba, R, Wiedermann, J, Hetmańczyk, M, Swadźba, L, Mendala, B, Witala, B & Komendera, Ł (2013). Microstructure degradation of EB-PVD TBCs on Pd-Pt-modified aluminide coatings under cyclic oxidation conditions. Surf Coat Technol 237, 1622.CrossRefGoogle Scholar
Swadźba, R, Wiedermann, J, Swadźba, L, Hetmańczyk, M, Witala, B, Schulz, U & Jung, T (2014 b). High temperature oxidation of EB-PVD TBCs on Pt-diffused single crystal Ni superalloy. Surf Coat Technol. doi:10.1016/j.surfcoat.2014.07.096CrossRefGoogle Scholar
Unocic, KA, Chen, Y, Shin, D, Pint, BA & Marquis, EA (2018). STEM and APT characterization of scale formation on a La, Hf, Ti-doped NiCrAl model alloy. Micron 109, 4152.CrossRefGoogle ScholarPubMed
Unocic, KA, Parish, CM & Pint, BA (2011). Characterization of the alumina scale formed on coated and uncoated doped superalloys. Surf Coat Technol 206(7), 15221528.CrossRefGoogle Scholar
Unocic, KA & Pint, BA (2013). Effect of water vapor on thermally grown alumina scales on bond coatings. Surf Coat Technol 215, 3038.CrossRefGoogle Scholar