Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-xq4m6 Total loading time: 0.291 Render date: 2022-07-06T16:05:44.962Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  11 January 2016

Mark W. Tate
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
Prafull Purohit
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
Darol Chamberlain
Affiliation:
Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
Kayla X. Nguyen
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
Robert Hovden
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
Celesta S. Chang
Affiliation:
Physics Department, Cornell University, Ithaca, NY 14853, USA
Pratiti Deb
Affiliation:
Physics Department, Cornell University, Ithaca, NY 14853, USA
Emrah Turgut
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
John T. Heron
Affiliation:
Physics Department, Cornell University, Ithaca, NY 14853, USA Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
Darrell G. Schlom
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
Daniel C. Ralph
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA Physics Department, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
Gregory D. Fuchs
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
Katherine S. Shanks
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
Hugh T. Philipp
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
David A. Muller*
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
Sol M. Gruner
Affiliation:
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA Physics Department, Cornell University, Ithaca, NY 14853, USA Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
*
*Corresponding author. david.a.muller@cornell.edu

Abstract

We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80–200 keV electron beams.

Type
Techniques, Software, and Equipment
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angello, A.G., Augustine, F., Ercan, A., Gruner, S., Hamlin, R., Hontz, T., Renzi, M., Schuette, D., Tate, M. & Vernon, W. (2004). Development of a mixed-mode pixel array detector for macromolecular crystallography. IEEE Nucl Sci Symp 7, 46674671.Google Scholar
Battaglia, M., Contarato, D., Denes, P., Doering, D., Giubilato, P., Kim, T.S., Mattiazzo, S., Radmilovic, V. & Zalusky, S. (2009). A rad-hard CMOS active pixel sensor for electron microscopy. Nucl Instrum Methods Phys Res A 598(2), 642649.CrossRefGoogle Scholar
Boyle, W.S. & Smith, G.E. (1970). Charge coupled semiconductor devices. Bell Syst Tech J 49(4), 587593.CrossRefGoogle Scholar
Caswell, T.A., Ercius, P., Tate, M.W., Ercan, A., Gruner, S.M. & Muller, D.A. (2009). A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 109(4), 304311.CrossRefGoogle Scholar
Chapman, J.N. (1984). The investigation of magnetic domain-structures in thin foils by electron-microscopy. J Phys D Appl Phys 17(4), 623647.CrossRefGoogle Scholar
Chapman, J.N., Batson, P.E., Waddell, E.M. & Ferrier, R.P. (1978). The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3(0), 203214.CrossRefGoogle ScholarPubMed
Cowley, J.M. (1993). Configured detectors for STEM imaging of thin specimens. Ultramicroscopy 49(1–4), 413.CrossRefGoogle Scholar
Dekkers, N.H. & Lang, H.D. (1974). Differential phase-contrast in a STEM. Optik 41(4), 452456.Google Scholar
Fan, G.Y., Datte, P., Beuville, E., Beche, J.F., Millaud, J., Downing, K.H., Burkard, F.T., Ellisman, M.H. & Xuong, N.H. (1998). ASIC-based event-driven 2D digital electron counter for TEM imaging. Ultramicroscopy 70(3), 107113.CrossRefGoogle ScholarPubMed
Fan, G.Y. & Ellisman, M.H. (2000). Digital imaging in transmission electron microscopy. J Microsc 200, 113.CrossRefGoogle ScholarPubMed
Faruqi, A.R., Cattermole, D.M., Henderson, R., Mikulec, B. & Raeburn, C. (2003). Evaluation of a hybrid pixel detector for electron microscopy. Ultramicroscopy 94(3–4), 263276.CrossRefGoogle ScholarPubMed
Faruqi, A.R., Henderson, R. & Tlustos, L. (2005). Noiseless direct detection of electrons in Medipix2 for electron microscopy. Nucl Instrum Methods Phys Res A 546(1–2), 160163.CrossRefGoogle Scholar
Gauvin, R., Lifshin, E., Demers, H., Horny, P. & Campbell, H. (2006). Win X-ray: A new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Microsc Microanal 12(01), 4964.CrossRefGoogle ScholarPubMed
Jin, L., Milazzo, A.C., Kleinfelder, S., Li, S.D., Leblanc, P., Duttweiler, F., Bouwer, J.C., Peltier, S.T., Ellisman, M.H. & Xuong, N.H. (2008). Applications of direct detection device in transmission electron microscopy. J Struct Biol 161(3), 352358.CrossRefGoogle ScholarPubMed
Kimoto, K. & Ishizuka, K. (2011). Spatially resolved diffractometry with atomic-column resolution. Ultramicroscopy 111(8), 11111116.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.CrossRefGoogle ScholarPubMed
Lubk, A. & Zweck, J. (2015). Differential phase contrast: An integral perspective. Phys Rev A 91(2), 023805.CrossRefGoogle Scholar
MacLaren, I., Wang, L.Q., McGrouther, D., Craven, A.J., McVitie, S., Schierholz, R., Kovacs, A., Barthel, J. & Dunin-Borkowski, R.E. (2015). On the origin of differential phase contrast at a locally charged and globally charge-compensated domain boundary in a polar-ordered material. Ultramicroscopy 154, 5763.CrossRefGoogle Scholar
Majert, S. & Kohl, H. (2015). High-resolution STEM imaging with a quadrant detector conditions for differential phase contrast microscopy in the weak phase object approximation. Ultramicroscopy 148, 8186.CrossRefGoogle ScholarPubMed
McGrouther, D., Krajnak, M., MacLaren, I., Maneuski, D., O’Shea, V. & Nellist, P.D. (2015). Use of a hybrid silicon pixel (Medipix) detector as a STEM detector. Microsc Microanal 21(Suppl S3), 15951596.CrossRefGoogle Scholar
McMullan, G., Chen, S., Henderson, R. & Faruqi, A.R. (2009). Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109(9), 11261143.CrossRefGoogle ScholarPubMed
McMullan, G., Faruqi, A.R., Clare, D. & Henderson, R. (2014). Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156163.CrossRefGoogle Scholar
Meyer, R.R. & Kirkland, A. (1998). The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75(1), 2333.CrossRefGoogle Scholar
Milazzo, A.-C., Leblanc, P., Duttweiler, F., Jin, L., Bouwer, J.C., Peltier, S., Ellisman, M., Bieser, F., Matis, H.S., Wieman, H., Denes, P., Kleinfelder, S. & Xuong, N.-H. (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104(2), 152159.CrossRefGoogle ScholarPubMed
Muller, K., Krause, F.F., Beche, A., Schowalter, M., Galioit, V., Loffler, S., Verbeeck, J., Zweck, J., Schattschneider, P. & Rosenauer, A. (2014). Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat Commun 5, 5653 (1–6).CrossRefGoogle ScholarPubMed
Ozdol, V.B., Gammer, C., Jin, X.G., Ercius, P., Ophus, C., Ciston, J. & Minor, A.M. (2015). Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl Phys Lett 106(25), article no. 253107, pp. 1–4.CrossRefGoogle Scholar
Pennycook, T.J., Lupini, A.R., Yang, H., Murfitt, M.F., Jones, L. & Nellist, P.D. (2015). Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution. Ultramicroscopy 151, 160167.CrossRefGoogle ScholarPubMed
Rose, H. (1974). Phase-contrast in scanning-transmission electron-microscopy. Optik 39(4), 416436.Google Scholar
Rose, H. (1976). Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251267.CrossRefGoogle Scholar
Schuette, D.R. (2008). A mixed analog and digital pixel array detector for synchrotron X-ray imaging. PhD Thesis. Cornell University, Ithaca, NY, USA.Google Scholar
Takahashi, Y. & Yajima, Y. (1994). Nonmagnetic contrast in scanning Lorentz electron microscopy of polycrystalline magnetic films. J Appl Phys 76(12), 76777681.CrossRefGoogle Scholar
Tate, M.W., Chamberlain, D., Green, K.S., Philipp, H.T., Purohit, P., Strohman, C. & Gruner, S.M. (2013). A medium-format, mixed-mode pixel array detector for kilohertz X-ray imaging. 11th International Conference on Synchrotron Radiation Instrumentation (SRI 2012) 425, 062004.CrossRefGoogle Scholar
Thompson, R.E., Larson, D.R. & Webb, W.W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5), 27752783.CrossRefGoogle ScholarPubMed
Vernon, W., Allin, M., Hamlin, R., Hontz, T., Nguyen, D., Augustine, F., Gruner, S.M., Xuong, N.H., Schuette, D.R., Tate, M.W. & Koerner, L.J. (2007). First results from the 128x128 pixel mixed-mode Si X-ray detector chip. Hard X-Ray Gamma-Ray Detector Phys IX 6706, U7060.Google Scholar
Waddell, E.M. & Chapman, J.N. (1979). Linear imaging of strong phase objects using asymmetrical detectors in STEM. Optik 54(2), 8396.Google Scholar
Yajima, Y. (2009). Lorentz scanning transmission electron microscopy (lorentz STEM): Model analyses of detector performance. Bull Col Edu Ibaraki Univ (Nat Sci) 58, 1924.Google Scholar
Yang, H., Pennycook, T.J. & Nellist, P.D. (2015). Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions. Ultramicroscopy 151, 232239.CrossRefGoogle ScholarPubMed
Zaluzec, N.J. (2002). Quantitative measurements of magnetic vortices using position resolved diffraction in lorentz STEM. Microsc Microanal 8(Suppl S02), 376377.CrossRefGoogle Scholar
Zuo, J.M. (2000). Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc Res Tech 49(3), 245268.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
219
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *