Hostname: page-component-5d59c44645-jqctd Total loading time: 0 Render date: 2024-02-24T16:03:09.662Z Has data issue: false hasContentIssue false

In Situ TEM Study of Catalytic Nanoparticle Reactions in Atmospheric Pressure Gas Environment

Published online by Cambridge University Press:  09 September 2013

Huolin L. Xin
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Kaiyang Niu
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Daan Hein Alsem
Hummingbird Scientific, Lacey, WA 98516, USA
Haimei Zheng*
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Get access


The understanding of solid–gas interactions has been greatly advanced over the past decade on account of the availability of high-resolution transmission electron microscopes (TEMs) equipped with differentially pumped environmental cells. The operational pressures in these differentially pumped environmental TEM (DP-ETEM) instruments are generally limited up to 20 mbar. Yet, many industrial catalytic reactions are operated at pressures equal or higher than 1 bar—50 times higher than that in the DP-ETEM. This poses limitations for in situ study of gas reactions through ETEM and advances are needed to extend in situ TEM study of gas reactions to the higher pressure range. Here, we present a first series of experiments using a gas flow membrane cell TEM holder that allows a pressure up to 4 bar. The built-in membrane heaters enable reactions at a temperature of 95–400°C with flowing reactive gases. We demonstrate that, using a conventional thermionic TEM, 2 Å atomic fringes can be resolved with the presence of 1 bar O2 gases in an environmental cell and we show real-time observation of the Kirkendall effect during oxidation of cobalt nanocatalysts.

Materials Applications
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Accutech Co. (n.d.). Gas/compressible flow calculation notes (FluidFlow3 Design Note 05). Available at Google Scholar
Allard, L.F., Overbury, S.H., Bigelow, W.C., Katz, M.B., Nackashi, D.P. & Damiano, J. (2012). Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc Microanal 18, 656666.Google Scholar
Atkinson, A. (1986). Diffusion in oxides of the first transition series metals. DTIC Document. Available at Scholar
Boyes, E.D. & Gai, P.L. (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.CrossRefGoogle Scholar
Carter, C.B. & Williams, D. (2009). Transmission Electron Microscopy. New York: Springer-Verlag.Google Scholar
Chen, W.K., Peterson, N.L. & Reeves, W.T. (1969). Isotope effect for cation self-diffusion in CoO crystals. Phys Rev 186, 887891.Google Scholar
Chenna, S., Banerjee, R. & Crozier, P.A. (2011). Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. Chem Cat Chem 3, 10511059.Google Scholar
Chuang, W.-H., Luger, T., Fettig, R.K. & Ghodssi, R. (2004). Mechanical property characterization of LPCVD silicon nitride thin films at cryogenic temperatures. J Microelectromech Sys 13, 870879.Google Scholar
Crane Co. (Ed.). (2011). Flow of Fluids through Valves, Fittings and Pipe. Stamford, CT: Crane.Google Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.CrossRefGoogle ScholarPubMed
de Jonge, N., Bigelow, W.C. & Veith, G.M. (2010). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.CrossRefGoogle ScholarPubMed
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nano 6, 695704.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. New York: Springer Science + Business Media.Google Scholar
Frances, M.R. (2010). Controlling nanowire structures through real time growth studies. Rep Prog Phys 73, 114501. Google Scholar
Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. New York: Springer.Google Scholar
Gusak, A.M., Zaporozhets, T.V., Tu, K.N. & Gösele, U. (2005). Kinetic analysis of the instability of hollow nanoparticles. Philos Mag 85, 44454464.CrossRefGoogle Scholar
Haider, M., Müller, H., Uhlemann, S., Zach, J., Loebau, U. & Hoeschen, R. (2008). Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167178.CrossRefGoogle ScholarPubMed
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S. & Topsøe, H. (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 20532055.Google Scholar
Hansen, T.W. & Wagner, J.B. (2012). Environmental transmission electron microscopy in an aberration-corrected environment. Microsc Microanal 18, 684690.CrossRefGoogle Scholar
Hatty, V., Kahn, H. & Heuer, A.H. (2008). Fracture toughness, fracture strength, and stress corrosion cracking of silicon dioxide thin films. J Microelectromech Sys 17, 943947.CrossRefGoogle Scholar
Jinschek, J.R. & Helveg, S. (2012). Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 11561168.Google Scholar
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.Google Scholar
Railsback, J.G., Johnston-Peck, A.C., Wang, J. & Tracy, J.B. (2010). Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 4, 19131920.Google Scholar
Reed, S. (1982). The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7, 405409.CrossRefGoogle Scholar
Rez, P. (1983). A transport equation theory of beam spreading in the electron microscope. Ultramicroscopy 12, 2938.CrossRefGoogle Scholar
Sharma, R. (2001). Design and applications of environmental cell transmission electron microscope for in situ observations of gas–solid reactions. Microsc Microanal 7, 494506.Google Scholar
Sharma, R. & Weiss, K. (1998). Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc Res Tech 42, 270280.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Smith, J.M., Van Ness, H.C. & Abbott, M. (2004). Introduction to Chemical Engineering Thermodynamics. New York: McGraw-Hill.Google Scholar
Sun, L., Noh, K.W., Wen, J.-G. & Dillon, S.J. (2011). In situ transmission electron microscopy observation of silver oxidation in ionized/atomic gas. Langmuir 27, 1420114206.Google Scholar
Van Aert, S., Chen, J.H. & Van Dyck, D. (2010). Linear versus non-linear structural information limit in high-resolution transmission electron microscopy. Ultramicroscopy 110, 14041410.Google Scholar
Vendelbo, S.B., Kooyman, P.J., Creemer, J.F., Morana, B., Mele, L., Dona, P., Nelissen, B.J. & Helveg, S. (2013). Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy. Ultramicroscopy 133, 7279.Google Scholar
Vlassak, J. & Nix, W. (1992). New bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films. J Mater Res 7, 32423249.Google Scholar
Yaguchi, T., Suzuki, M., Watabe, A., Nagakubo, Y., Ueda, K. & Kamino, T. (2011). Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J Electron Microsc 60, 217225.Google Scholar
Yin, Y., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A. & Alivisatos, A.P. (2004). Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711714.CrossRefGoogle ScholarPubMed
Yokosawa, T., Alan, T., Pandraud, G., Dam, B. & Zandbergen, H. (2012). In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400°C. Ultramicroscopy 112, 4752.Google Scholar
Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M. & Takeda, S. (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317319.Google Scholar

Xin Supplementary Material

Movie 1

Download Xin Supplementary Material(Video)
Video 27 MB

Xin Supplementary Material

Movie 2

Download Xin Supplementary Material(Video)
Video 2 MB

Xin Supplementary Material

Movie 3

Download Xin Supplementary Material(Video)
Video 24 MB

Xin Supplementary Material

Movie 4

Download Xin Supplementary Material(Video)
Video 2 MB
Supplementary material: PDF

Xin Supplementary Material

Figures S1-S5

Download Xin Supplementary Material(PDF)
PDF 874 KB