Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-14T22:32:04.022Z Has data issue: false hasContentIssue false

Matched Backprojection Operator for Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

Published online by Cambridge University Press:  05 June 2015

Tim Dahmen*
Affiliation:
German Research Center for Artificial Intelligence GmbH (DFKI), 66123 Saarbrücken, Germany
Holger Kohr
Affiliation:
Department of Mathematics, KTH Royal Institute of Technology, Lindstedtsvägen 25, Stockholm, SE 100 44, Sweden
Niels de Jonge
Affiliation:
INM Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
Philipp Slusallek
Affiliation:
German Research Center for Artificial Intelligence GmbH (DFKI), 66123 Saarbrücken, Germany
*
*Corresponding author. Tim.Dahmen@dfki.de
Get access

Abstract

Combined tilt- and focal series scanning transmission electron microscopy is a recently developed method to obtain nanoscale three-dimensional (3D) information of thin specimens. In this study, we formulate the forward projection in this acquisition scheme as a linear operator and prove that it is a generalization of the Ray transform for parallel illumination. We analytically derive the corresponding backprojection operator as the adjoint of the forward projection. We further demonstrate that the matched backprojection operator drastically improves the convergence rate of iterative 3D reconstruction compared to the case where a backprojection based on heuristic weighting is used. In addition, we show that the 3D reconstruction is of better quality.

Type
Techniques and Equipment Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AMD (2013). AMD Math Libraries OpenCL Fast Fourier Transforms (FFTs) clAmdFft. http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-math-libraries/#.Google Scholar
Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. (2008). STEM tomography for thick biological specimens. Ultramicroscopy 109(1), 7080.CrossRefGoogle ScholarPubMed
Batenburg, K. & Sijbers, J. (2007). DART: A fast heuristic algebraic reconstruction algorithm for discrete tomography. Image Process. 2007. ICIP 2007 4(2), IV133.Google Scholar
Baudoin, J.P., Jerome, W.G., Kübel, C. & de Jonge, N. (2013). Whole-cell analysis of low-density lipoprotein uptake by macrophages using STEM tomography. PLoS One 8(1), e55022.Google Scholar
Behan, G., Cosgriff, E.C., Kirkland, A.I. & Nellist, P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Phil Trans A Math Phys Eng Sci 367(1903), 38253844.Google ScholarPubMed
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci USA. 103(9), 30443048.Google Scholar
Bracewell, R. (1956). Strip integration in radio astronomy. Aust J Phys 9(2), 198.CrossRefGoogle Scholar
Dahmen, T., Baudoin, J.P., Lupini, A.R., Kübel, C., Slusallek, P. & de Jonge, N. (2014). Combined scanning transmission electron microscopy tilt- and focal series. Microsc Microanal 20(2), 548560.Google Scholar
de Jonge, N., Sougrat, R., Northan, B.M. & Pennycook, S.J. (2010). Three-dimensional scanning transmission electron microscopy of biological specimens. Micros Microanal 16(1), 5463.Google Scholar
Dukes, M.J., Ramachandra, R., Baudoin, J.P., Gray Jerome, W. & de Jonge, N. (2011). Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3nm precision using aberration-corrected scanning transmission electron microscopy. J Struct Biol 174(3), 552562.CrossRefGoogle Scholar
Elfving, T., Hansen, P.C. & Nikazad, T. (2014). Semi-convergence properties of Kaczmarz’s method. Inverse Probl 30(5), 055007.Google Scholar
Fernandez, J.J. (2012). Computational methods for electron tomography. Micron 43(10), 10101030.CrossRefGoogle ScholarPubMed
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81(11), 2112.Google Scholar
Goris, B., Van den Broek, W., Batenburg, K.J., Heidari Mezerji, H. & Bals, S. (2012). Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120130.Google Scholar
Hohmann-Marriott, M.F., Sousa, A.A., Azari, A.A., Glushakova, S., Zhang, G., Zimmerberg, J. & Leapman, R.D. (2009). Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Meth 6(10), 729731.Google Scholar
Hovden, R., Ercius, P., Jiang, Y., Wang, D., Yu, Y., Abruña, H.D., Elser, V. & Muller, D.A. (2014). Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions. Ultramicroscopy 140, 2631.Google Scholar
Intaraprasonk, V., Xin, H.L. & Muller, D.A. (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108(11), 14541466.Google Scholar
Koster, A.J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J. & Baumeister, W. (1997). Perspectives of molecular and cellular electron tomography. J Struct Biol 120(3), 276308.CrossRefGoogle ScholarPubMed
Kübel, C., Voigt, A., Schoenmakers, R., Otten, M., Su, D., Lee, T.C., Carlsson, A. & Bradley, J. (2005). Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc Microanal 11(5), 378400.Google Scholar
Lanzavecchia, S., Cantele, F., Bellon, P.L., Zampighi, L., Kreman, M., Wright, E. & Zampighi, G.A. (2005). Conical tomography of freeze-fracture replicas: A method for thestudy of integral membrane proteins inserted in phospholipid bilayers. J Struct Biol 149(1), 8798.Google Scholar
Lewitt, R.M. (1990). Multidimensional digital image representations using generalized Kaiser-Bessel window functions. J Opt Soc Am A 7(10), 18341846.Google Scholar
Lupini, A.R. & de Jonge, N. (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Micros Microanal 17(5), 817826.CrossRefGoogle ScholarPubMed
Marabini, R., Herman, G.T. & Carazo, J.M. (1998). 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs). Ultramicroscopy 72(1–2), 5365.Google Scholar
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8(4), 271280.Google Scholar
Natterer, F. (1986). The Mathematics of Computerized Tomography. Philadelphia: SIAM.Google Scholar
Penczek, P., Marko, M., Buttle, K. & Frank, J. (1995). Double-tilt electron tomography. Ultramicroscopy 60(3), 393410.Google Scholar
Ramachandra, R. & de Jonge, N. (2012). Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy. Microsc Microanal 18(1), 218228.Google Scholar
Rudin, W. (1987). Real and Complex Analysis. Boston: McGraw-Hill.Google Scholar
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R. & Van Tendeloo, G. (2011). Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374377.Google Scholar
Zeng, G.L. & Gullberg, G.T. (2000). Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. IEEE Trans Med Imaging 19(5), 548555.CrossRefGoogle Scholar