Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T01:33:07.478Z Has data issue: false hasContentIssue false

Quantitative Evaluation of Spinodal Decomposition in Fe-Cr by Atom Probe Tomography and Radial Distribution Function Analysis

Published online by Cambridge University Press:  03 May 2013

Jing Zhou*
Affiliation:
Department of Material Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
Joakim Odqvist
Affiliation:
Department of Material Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden AB Sandvik Materials Technology, R&D Centre, SE-811 81 Sandviken, Sweden
Mattias Thuvander
Affiliation:
Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
Peter Hedström
Affiliation:
Department of Material Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
*
*Corresponding author. E-mail: jingzhou@kth.se
Get access

Abstract

Nanostructure evolution during low temperature aging of three binary Fe-Cr alloys has been investigated by atom probe tomography. A new method based on radial distribution function (RDF) analysis to quantify the composition wavelength and amplitude of spinodal decomposition is proposed. Wavelengths estimated from RDF have a power-law type evolution and are in reasonable agreement with wavelengths estimated using other more conventional methods. The main advantages of the proposed method are the following: (1) Selecting a box size to generate the frequency diagram, which is known to generate bias in the evaluation of amplitude, is avoided. (2) The determination of amplitude is systematic and utilizes the wavelength evaluated first to subsequently evaluate the amplitude. (3) The RDF is capable of representing very subtle decomposition, which is not possible using frequency diagrams, and thus a proposed theoretical treatment of the experimental RDF creates the possibility to determine amplitude at very early stages of spinodal decomposition.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blavette, D. & Auger, P. (1990). Fine scale investigation of some phenomena in metallic alloys by field ion microscopy and atom probe microanalysis. Microsc Microanal Microstruct 1, 481492.CrossRefGoogle Scholar
Blavette, D., Grancher, G. & Bostel, A. (1988). Statistical analysis of atom-probe data (I): Derivation of some fine scale features from frequency distributions for finely dispersed systems. J de Phys 49(C6), 433438.Google Scholar
Bley, F. (1992). Neutron small-angle scattering study of unmixing in Fe-Cr alloys. Acta Metall Mater 40, 15051517.CrossRefGoogle Scholar
Brenner, S.S., Camus, P.P., Miller, M.K. & Soffa, W.A. (1984). Phase separation and coarsening in Fe-Cr-Co alloys. Acta Metall 32, 12171227.CrossRefGoogle Scholar
Brenner, S.S., Miller, M.K. & Soffa, W.A. (1982). Spinodal decomposition of iron-32 at.% chromium at 470°C. Scripta Metall 16, 831836.CrossRefGoogle Scholar
Brown, J.E., Cerezo, A., Godfrey, T.J., Hetherington, M.G. & Smith, G.D.W. (1990). Quantitative atom probe analysis of spinodal reaction in ferrite phase of duplex stainless steel. Mater Sci Tech 6, 293300.CrossRefGoogle Scholar
Brown, J.E. & Smith, G.D.W. (1991). Atom probe study of spinodal processes in duplex stainless steels and in single- and dual-phase Fe-Cr-Ni alloys. Surf Sci 246, 285291.CrossRefGoogle Scholar
Cahn, J.W. (1961). On spinodal decomposition. Acta Metall 9, 795801.CrossRefGoogle Scholar
Cahn, J.W. (1968). Spinodal decomposition. Trans AIME 242, 166180.Google Scholar
Cahn, J.W. & Hilliard, J.E. (1958). Free energy of a nonuniform system: I. J Chem Phys 28, 258267.CrossRefGoogle Scholar
Chandra, D. & Schwartz, L.H. (1971). Mössbauer effect study of the 475°C decomposition of Fe-Cr. Metall Trans 2, 511519.CrossRefGoogle Scholar
Chung, H.M. & Chopra, O.K. (1988). Kinetics and mechanism of thermal aging embrittlement of duplex stainless steels. Proceedings of the 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, pp. 359370. Warrendale, PA: Metallurgical Society Inc. Google Scholar
Chung, H.M. & Leax, T.R. (1990). Embrittlement of laboratory and reactor aged CF3, CF8, and CF8M duplex stainless steels. Mater Sci Tech 6, 249262.CrossRefGoogle Scholar
Danoix, F., Auger, P. & Blavette, D. (1992a). An atom-probe investigation of some correlated phase transformations in Cr, Ni, Mo containing supersaturated ferrites. Surf Sci 266, 364369.CrossRefGoogle Scholar
Danoix, F., Deconihout, B., Bostel, A. & Auger, P. (1992b). Some new aspects on microstructural and morphological evolution of thermally aged duplex stainless steels. Surf Sci 266, 409415.CrossRefGoogle Scholar
De Geuser, F., Lefebvre, W. & Blavette, D. (2006). 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy. Philos Mag Lett 86, 227234.CrossRefGoogle Scholar
Gault, B., De Geuser, F., Stephenson, L.T., Moody, M.P., Muddle, B.C. & Ringer, S.P. (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14, 296305.CrossRefGoogle Scholar
Godfrey, T.J., Hetherington, M.G., Sassen, J.M. & Smith, G.D.W. (1988). The characterization of spinodal structures in duplex CF3 steels. J de Phys 49, 421426.Google Scholar
Grest, G.S. & Srolovitz, J. (1984). Structure and evolution of quenched Ising clusters. Phys Rev B 30, 51505155.CrossRefGoogle Scholar
Hedström, P., Baghsheikhi, S., Liu, P. & Odqvist, J. (2012). A phase-field and electron microscopy study of phase separation in Fe-Cr alloys. Mater Sci Eng A 534, 552556.CrossRefGoogle Scholar
Hetherington, M.G. & Miller, M.K. (1989). Some aspects of the measurement of composition in the atom probe. Colloq Physique 50, 535540.Google Scholar
Hillert, M. (1956). A theory of nucleation for solid metallic solutions. PhD Thesis. Cambridge, MA: Massachusetts Institute of Technology. Google Scholar
Hillert, M. (1961). A solid-solution model for inhomogeneous systems. Acta Metall 9, 525535.CrossRefGoogle Scholar
Hörling, A., Hultman, L., Oden, M., Sjölen, J. & Karlsson, L. (2005). Mechanical properties and machining performance of Ti1-x Al x N-coated cutting tools. Surf Coat Tech 191, 384392.CrossRefGoogle Scholar
Huse, D.A. (1986). Corrections to late-stage behavior in spinodal decomposition: Lifshitz-Slyozov scaling and Monte Carlo simulations. Phys Rev B 34, 78457850.CrossRefGoogle ScholarPubMed
Hyde, J.M., Cerezo, A., Miller, M.K. & Smith, G.D.W. (1994). A study of the effect of ageing temperature on pahse separation in Fe-45%Cr alloys. Appl Surf Sci 76/77, 233241.CrossRefGoogle Scholar
Hyde, J.M., Miller, M.K., Hetherington, M.G., Cerezo, A., Smith, G.D.W. & Elliott, C.M. (1995). Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models—II. Development of domain size and composition amplitude. Acta Metall Mater 43, 34043413.Google Scholar
Langer, J.S., Baron, M. & Miller, H.D. (1975). New computational method in the theory of spinodal decomposition. Phys Rev A 11, 14171429.CrossRefGoogle Scholar
Lebowitz, J.L., Marro, J. & Kalos, M.H. (1982). Dynamical scaling of structure function in quenched binary alloys. Acta Metall 30, 297310.CrossRefGoogle Scholar
Miller, M.K. (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Miller, M.K., Brenner, S.S., Camus, P.P., Piller, J. & Soffa, W.A. (1982). Low-temperature precipitation in iron-chromium binary alloys. Proc Int Field Emiss Symp 29, 489496.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G & Hyde, J.M. (1992). Estimation of composition amplitude: Pa and LBM versus V. Surf Sci 266, 446452.CrossRefGoogle Scholar
Miller, M.K., Hyde, J.M., Hetherington, M.G., Cerezo, A., Smith, G.D.W. & Elliott, C.M. (1995). Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models—I. Introduction and methodology. Acta Metall Mater 43, 33853401.CrossRefGoogle Scholar
Miller, M.K. & Kenik, E.A. (2004). Atom probe tomography: A technique for nanoscale characterization. Microsc Microanal 10, 336341.CrossRefGoogle ScholarPubMed
Odqvist, J., Zhou, J., Xiong, W., Hedström, P., Thuvander, M., Selleby, M. & Ågren, J. (2012). 3D analysis of phase separation in ferritic stainless steels. In Proceedings 3D Material Science 2012. Pittsburgh, PA: TMS.Google Scholar
Oehring, M. & Alvensleben, L.V. (1988). Evaluation of atom probe concentration profiles by autocorrelation analysis. J de Phys 49, 415420.Google Scholar
Okada, M., Thomas, G., Homma, M. & Kaneko, H. (1978). Microstructure and magnetic properties of Fe-Cr-Co alloys. IEEE Trans Mag 14, 245252.CrossRefGoogle Scholar
Pareige, C., Novy, S., Saillet, S. & Pareige, P. (2011). Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years). J Nucl Mater 411, 9096.CrossRefGoogle Scholar
Rao, M., Kalos, M.H., Lebowitz, J.L. & Marro, J. (1976). Time evolution of a quenched binary alloy. III. Computer simulation of a two-dimensional model system. Phys Rev B 13, 43284335.CrossRefGoogle Scholar
Read, H.G. & Murakami, H. (1996). Microstructural influences on the decomposition of an Al-containing ferritic stainless steel. App Surf Sci 94/95, 334342.CrossRefGoogle Scholar
Sassen, J.M., Hetherington, M.G., Godfrey, T.J., Smith, G.D.W., Pumphrey, P.H. & Akhurst, K.N. (1987). Kinetics of spinodal reaction in the ferrite phase of a duplex stainless steel. In Properties of Stainless Steels in Elevated Temperature Service, Prager, M. (Ed.), pp. 6578. New York: AMSE.Google Scholar
Thuvander, M., Andrèn, H.-O., Stiller, K. & Hu, Q.H. (1998). A statistical method to detect ordering and phase separation by APFIM. Ultramicroscopy 73, 279285.CrossRefGoogle Scholar
Thuvander, M., Zhou, J., Odqvist, J., Hertzman, S. & Hedström, P. (2012). Observations of copper clustering in a 25Cr-7Ni super duplex stainless steel during low-temperature aging under load. Phil Mag Lett 92, 336343.Google Scholar
Xiong, W. (2012). Thermodynamic and kinetic investigation of the Fe-Cr-Ni system driven by engineering applications. PhD Thesis. Sweden: KTH. Google Scholar
Xiong, W., Hedström, P., Selleby, M., Odqvist, J., Thuvander, M. & Chen, Q. (2011). An improved thermodynamic modeling of the Fe-Cr system down to zero kelvin coupled with key experiments. CALPHAD 35, 355366.CrossRefGoogle Scholar
Zhou, J., Odqvist, J., Thuvander, M., Hertzman, S. & Hedström, P. (2012). Concurrent phase separation and clustering in the ferrite phase during low temperature stress-aging of duplex stainless steel weldments. Acta Mater 60, 58185827.CrossRefGoogle Scholar