Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T23:50:52.373Z Has data issue: false hasContentIssue false

Visualizing Quantum Dot Labeled ORAI1 Proteins in Intact Cells Via Correlative Light and Electron Microscopy

Published online by Cambridge University Press:  12 August 2016

Diana B. Peckys
Affiliation:
Department of Molecular Biophysics, Saarland University, CIPMM, 66421 Homburg, Germany
Dalia Alansary
Affiliation:
Department of Molecular Biophysics, Saarland University, CIPMM, 66421 Homburg, Germany
Barbara A. Niemeyer
Affiliation:
Department of Molecular Biophysics, Saarland University, CIPMM, 66421 Homburg, Germany
Niels de Jonge*
Affiliation:
INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany Department of Physics, Saarland University, 66123 Saarbrücken, Germany
*
*Corresponding author.niels.dejonge@leibniz-inm.de
Get access

Abstract

ORAI1 proteins are ion channel subunits and the essential pore-forming units of the calcium release-activated calcium channel complex essential for T-cell activation and many other cellular processes. In this study, we used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to image plasma membrane expressed ORAI1 proteins in whole Jurkat T cells in the liquid state. Utilizing a stably transfected Jurkat T cell clone expressing human ORAI1 with an extracellular human influenza hemagglutinin (HA) tag we investigated if liquid-phase STEM can be applied to detect recombinant surface expressed protein. Streptavidin coated quantum dots were coupled in a one-to-one stoichiometry to ORAI1 proteins detected by biotinylated anti-HA fragmented antibody fragments. High-resolution electron microscopic images revealed the individual label locations from which protein pair distances were determined. These data were analyzed using the pair correlation function and, in addition, an analysis of cluster size and frequency was performed. ORAI1 was found to be present in hexamers in a small fraction only, and ORAI1 resided mostly in monomers and dimers.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alansary, D., Bogeski, I. & Niemeyer, B.A. (2015). Facilitation of Orai3 targeting and store-operated function by Orai1. Biochim Biophys Acta 1853, 15411550.CrossRefGoogle ScholarPubMed
Arant, R.J. & Ulbrich, M.H. (2014). Deciphering the subunit composition of multimeric proteins by counting photobleaching steps. Chem Phys Chem 15, 600605.CrossRefGoogle ScholarPubMed
Bogner, A., Thollet, G., Basset, D., Jouneau, P.H. & Gauthier, C. (2005). Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301.CrossRefGoogle Scholar
Cambi, A. & Lidke, D.S. (2012). Nanoscale membrane organization: Where biochemistry meets advanced microscopy. ACS Chem Biol 7, 139149.CrossRefGoogle ScholarPubMed
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci U S A 106, 21592164.CrossRefGoogle ScholarPubMed
Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S.H., Tanasa, B., Hogan, P.G., Lewis, R.S., Daly, M. & Rao, A. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179185.Google Scholar
Field, J., Nikawa, J., Broek, D., MacDonald, B., Rodgers, L., Wilson, I.A., Lerner, R.A. & Wigler, M. (1988). Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol 8, 21592165.Google ScholarPubMed
Fiksel, T. (1988). Edge-corrected density estimators for points processes. Statistics 19, 6775.CrossRefGoogle Scholar
Georgieva, M.V., Yahya, G., Codo, L., Ortiz, R., Teixido, L., Claros, J., Jara, R., Jara, M., Iborra, A., Gelpi, J.L., Gallego, C., Orozco, M. & Aldea, M. (2015). Inntags: small self-structured epitopes for innocuous protein tagging. Nat Methods 12, 955958.CrossRefGoogle ScholarPubMed
Gwack, Y., Srikanth, S., Feske, S., Cruz-Guilloty, F., Oh-hora, M., Neems, D.S., Hogan, P.G. & Rao, A. (2007). Biochemical and functional characterization of Orai proteins. J Biol Chem 282, 1623216243.CrossRefGoogle ScholarPubMed
Hermannsdörfer, J., Tinnemann, V., Peckys, D.B. & de Jonge, N. (2016). The effect of electron beam irradiation in environmental scanning transmission electron microscopy of whole cells in liquid. Microsc Microanal 20, 656665, doi: http://dx.doi.org/10.1017/S1431927616000763.Google Scholar
Hodeify, R., Selvaraj, S., Wen, J., Arredouani, A., Hubrack, S., Dib, M., Al-Thani, S.N., McGraw, T. & Machaca, K. (2015). A STIM1-dependent “trafficking trap” mechanism regulates Orai1 plasma membrane residence and Ca(2)(+) influx levels. J Cell Sci 128, 31433154.Google Scholar
Hou, X., Pedi, L., Diver, M.M. & Long, S.B. (2012). Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 13081313.CrossRefGoogle ScholarPubMed
Inayama, M., Suzuki, Y., Yamada, S., Kurita, T., Yamamura, H., Ohya, S., Giles, W.R. & Imaizumi, Y. (2015). Orai1-Orai2 complex is involved in store-operated calcium entry in chondrocyte cell lines. Cell Calcium 57, 337347.CrossRefGoogle ScholarPubMed
Kilch, T., Alansary, D., Peglow, M., Dorr, K., Rychkov, G., Rieger, H., Peinelt, C. & Niemeyer, B.A. (2013). Mutations of the 2+ -sensing stromal interaction molecule STIM1 regulate 2+ influx by altered oligomerization of STIM1 and by destabilization of the 2+ channel Orai1. J Biol Chem 288, 16531664.CrossRefGoogle Scholar
Kinoshita, T., Mori, Y., Hirano, K., Sugimoto, S., Okuda, K., Matsumoto, S., Namiki, T., Ebihara, T., Kawata, M., Nishiyama, H., Sato, M., Suga, M., Higashiyama, K., Sonomoto, K., Mizunoe, Y., Nishihara, S. & Sato, C. (2014). Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy. Microsc Microanal 20, 469483.CrossRefGoogle ScholarPubMed
Kourkoutis, L.F., Plitzko, J.M. & Baumeister, W. (2012). Electron microscopy of biological materials at the nanometer scale. Annu Rev Mater Res 42, 3358.CrossRefGoogle Scholar
Laganowsky, A., Reading, E., Hopper, J.T.S. & Robinson, C.V. (2013). Mass spectrometry of intact membrane protein complexes. Nat Protoc 8, 639651.CrossRefGoogle ScholarPubMed
Lippincott-Schwartz, J. & Manley, S. (2009). Putting super-resolution fluorescence microscopy to work. Nat Methods 6, 2123.CrossRefGoogle ScholarPubMed
Lis, A., Peinelt, C., Beck, A., Parvez, S., Monteilh-Zoller, M., Fleig, A. & Penner, R. (2007). CRACM1, CRACM2, and CRACM3 are store-operated 2+ channels with distinct functional properties. Curr Biol 17, 794800.CrossRefGoogle ScholarPubMed
Liv, N., Lazic, I., Kruit, P. & Hoogenboom, J.P. (2014). Scanning electron microscopy of individual nanoparticle bio-markers in liquid. Ultramicroscopy 143, 9399.CrossRefGoogle ScholarPubMed
Luik, R.M., Wu, M.M., Buchanan, J. & Lewis, R.S. (2006). The elementary unit of store-operated 2+ entry: Local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174, 815825.CrossRefGoogle ScholarPubMed
Maruyama, Y., Ogura, T., Mio, K., Kato, K., Kaneko, T., Kiyonaka, S., Mori, Y. & Sato, C. (2009). Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 284, 1367613685.CrossRefGoogle ScholarPubMed
Moraes, I., Evans, G., Sanchez-Weatherby, J., Newstead, S. & Stewart, P.D.S. (2014). Membrane protein structure determination—The next generation. Biochim Biophys Acta 1838, 7887.Google Scholar
Nishiyama, H., Suga, M., Ogura, T., Maruyama, Y., Koizumi, M., Mio, K., Kitamura, S. & Sato, C. (2010). Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169, 438449.Google Scholar
Nolz, J.C., Gomez, T.S., Zhu, P., Li, S., Medeiros, R.B., Shimizu, Y., Burkhardt, J.K., Freedman, B.D. & Billadeau, D.D. (2006). The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr Biol 16, 2434.CrossRefGoogle ScholarPubMed
Orci, L., Ravazzola, M., Le Coadic, M., Shen, W.-w., Demaurex, N. & Cosson, P. (2009). STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum. Proc Natl Acad Sci U S A 106, 1935819362.CrossRefGoogle ScholarPubMed
Peckys, D.B., Baudoin, J.P., Eder, M., Werner, U. & de Jonge, N. (2013). Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci Rep 3, 2626. 2621–2626.Google Scholar
Peckys, D.B. & de Jonge, N. (2014). Liquid scanning transmission electron microscopy: Imaging protein complexes in their native environment in whole eukaryotic cells. Microsc Microanal 20, 346365.Google Scholar
Peckys, D.B. & de Jonge, N. (2015). Studying the stoichiometry of epidermal growth factor receptor in intact cells using correlative microscopy. J Vis Exp 103, e53186.Google Scholar
Peckys, D.B., Korf, U. & de Jonge, N. (2015). Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci Adv 1, e1500165.CrossRefGoogle ScholarPubMed
Piston, D.W. & Kremers, G.J. (2007). Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem Sci 32, 407414.CrossRefGoogle ScholarPubMed
Prakriya, M., Feske, S., Gwack, Y., Srikanth, S., Rao, A. & Hogan, P.G. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230233.CrossRefGoogle ScholarPubMed
Prakriya, M. & Lewis, R.S. (2015). Store-operated calcium channels. Physiol Rev 95, 13831436.CrossRefGoogle ScholarPubMed
Quintana, A., Pasche, M., Junker, C., Al-Ansary, D., Rieger, H., Kummerow, C., Nunez, L., Villalobos, C., Meraner, P., Becherer, U., Rettig, J., Niemeyer, B.A. & Hoth, M. (2011). Calcium microdomains at the immunological synapse: How ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30, 38953912.CrossRefGoogle ScholarPubMed
Ring, E.A., Peckys, D.B., Dukes, M.J., Baudoin, J.P. & de Jonge, N. (2011). Silicon nitride windows for electron microscopy of whole cells. J Microsc 243, 273283.CrossRefGoogle ScholarPubMed
Sauc, S., Bulla, M., Nunes, P., Orci, L., Marchetti, A., Antigny, F., Bernheim, L., Cosson, P., Frieden, M. & Demaurex, N. (2015). STIM1L traps and gates Orai1 channels without remodeling the cortical ER. J Cell Sci 128, 15681579.Google ScholarPubMed
Schuh, T. & de Jonge, N. (2014). Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids. C R Phys 15, 214223.CrossRefGoogle Scholar
Shine, J., Fettes, I., Lan, N.C., Roberts, J.L. & Baxter, J.D. (1980). Expression of cloned beta-endorphin gene sequences by Escherichia coli. Nature 285, 456463.CrossRefGoogle ScholarPubMed
Soboloff, J., Rothberg, B.S., Madesh, M. & Gill, D.L. (2012). STIM proteins: Dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13, 549565.Google Scholar
Stoyan, D., Bertram, U. & Wendrock, H. (1993). Estimation variances for estimators of product densities and pair correlation functions of planar points processes. Ann Inst Statist Math 45, 211221.CrossRefGoogle Scholar
Stoyan, D. & Stoyan, H. (1996). Estimating pair correlation functions of planar cluster processes. Biom J 38, 259271.CrossRefGoogle Scholar
Thiberge, S., Nechushtan, A., Sprinzak, D., Gileadi, O., Behar, V., Zik, O., Chowers, Y., Michaeli, S., Schlessinger, J. & Moses, E. (2004). Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci USA 101, 3346.CrossRefGoogle ScholarPubMed
Vig, M., Peinelt, C., Beck, A., Koomoa, D.L., Rabah, D., Koblan-Huberson, M., Kraft, S., Turner, H., Fleig, A., Penner, R. & Kinet, J.P. (2006). CRACM1 is a plasma membrane protein essential for store-operated 2+ entry. Science 312, 12201223.Google Scholar
Wojcik, M., Hauser, M., Li, W., Moon, S. & Xu, K. (2015). Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells. Nat Commun 6, 7384.CrossRefGoogle ScholarPubMed
Wu, M.M., Buchanan, J., Luik, R.M. & Lewis, R.S. (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174, 803813.Google Scholar
Zhang, S.L., Yeromin, A.V., Zhang, X.H., Yu, Y., Safrina, O., Penna, A., Roos, J., Stauderman, K.A. & Cahalan, M.D. (2006). Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103, 93579362.CrossRefGoogle ScholarPubMed
Supplementary material: File

Peckys supplementary material

Figures S1-S3

Download Peckys supplementary material(File)
File 978.9 KB