Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T09:09:48.733Z Has data issue: false hasContentIssue false

Confocal Microscopy in Ecophysiological Studies of Algae: A Door to Understanding Autofluorescence in Red Algae

Published online by Cambridge University Press:  24 November 2021

Teresa Coronado-Parra
Affiliation:
Servicio de Microscopía del Área Científica y Técnica de Investigación (ACTI) de la Universidad de Murcia, Murcia 30100, Spain
Mónica Roldán
Affiliation:
Unidad de Microscopía Confocal e Imagen Celular, Servicio de Medicina Genética y Molecular, Instituto Pediátrico de Enfermedades Raras (IPER), Hospital Sant Joan de Déu, e Instituto de Investigación Sant Joan de Déu, Esplugues de Llobregat 08950, Spain Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, Esplugues de Llobregat 08950, Spain
Marina Aboal*
Affiliation:
Laboratorio de Algología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia E-30100, Spain
*
*Corresponding author: Marina Aboal, E-mail: maboal@um.es
Get access

Abstract

Alga in the genus Chroothece have been reported mostly from aquatic or subaerial continental environments, where they grow in extreme conditions. The strain Chroothece mobilis MAESE 20.29 was exposed to different light intensities, red and green monochromatic light, ultraviolet (UV) radiation, high nitrogen concentrations, and high salinity to assess the effect of those environmental parameters on its growth. Confocal laser scanning microscopy (CLSM) was used as an “in vivo” noninvasive single-cell method for the study. The strain seemed to prefer fairly high light intensities and showed a significant increase in allophycocyanin (APC) and chlorophyll a [photosystem I (PSI) and photosystem II (PSII)] fluorescence with 330 and 789 μM/cm2/s intensities. Green monochromatic light promoted a significant increase in the fluorescence of APC and chlorophyll a (PSI and PSII). UV-A significantly decreased phycocyanin and increased APC, while UV-A + B showed a greater decreasing effect on c-Phycocyanin but did not significantly change concentrations of APC. The increase in nitrogen concentration in the culture medium significantly and negatively affected all pigments, and no effect was observed with an increase in salinity. Our data show that CLSM represents a very powerful tool for ecological research of microalgae in small volumes and may contribute to the knowledge of phycobiliproteins in vivo behavior and the parameters for the large-scale production of these pigments.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboal, M, Chapuis, I, Orlandi-Paiano, M, Sánchez, P, West, JA, Whitton, BA & Necchi, O (2017). Diversity of Chroothece (Rhodophyta, Stylonematales) with the description of two new species. Eur J Phycol 53, 189197. doi:10.1080/09670262.2017.1402374CrossRefGoogle Scholar
Aboal, M, García-Fernández, ME, Roldán, M & Whitton, BA (2014 a). Ecology, morphology and physiology of Chroothece richteriana (Rhodophyta, Stylonematophyceae) in the highly calcareous Río Chícamo, southeast Spain. J Phycol 49, 8396. doi:10.1080/09670262.2014.893018CrossRefGoogle Scholar
Aboal, M, González-Silvera, D, Roldán, M, Hernández-Mariné, M, López-Jiménez, JA & Whitton, BA (2014 b). The freshwater alga Chroothece richteriana (Rhodophyta) as a potential source of lipids. Food Chem 162, 143148.CrossRefGoogle ScholarPubMed
Aguilera, J, Jiménez, C, Figueroa, FL, Lebert, M & Häder, DP (1999). Effect of ultraviolet radiation on thallus absorption and photosynthetic pigments in the red alga Porphyra umbilicalis. J Photochem Photobiol B: Biol 48, 7582.CrossRefGoogle Scholar
Alam, T, Najam, L & Al Harrasi, A (2018). Extraction of natural pigments from marine algae. JAMS 23, 8191. doi:10.24200/jams.vol23iss1pp81–91Google Scholar
Araóz, R, Lebert, M & Häder, DP (1998). Electrophoretic applications of phycobiliproteins. Electrophoresis 19, 215219.CrossRefGoogle ScholarPubMed
Beutler, M, Wiltshire, KH, Meyer, B, Moldaenke, C, Lüring, C, Meyerhöfr, M, Hansen, UP & Dau, H (2002). A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72, 3953. doi:10.1023/A.101602660CrossRefGoogle ScholarPubMed
Blinn, DW & Prescott, GW (1976). A North American distribution record for the rare rhodophyceae Chroothece mobilis Pacher & Petrová. Am Midl Nat 96, 207210.CrossRefGoogle Scholar
Bouchard, JN, Longhi, ML, Roy, S, Campbell, DA & Ferreyra, G (2008). Interaction of nitrogen status and UVB sensitivity in a temperate phytoplankton assemblage. J Exp Mar Biol Ecol 359, 6776.CrossRefGoogle Scholar
Bryant, DA (1982). Phycoerythrocyanin and phycoerythrin: Properties and occurrence in Cyanobacteria. J Gen Microbiol 128, 835844.Google Scholar
Campbell, DA, Hurry, V, Clarke, AK, Gustafsson, P & Oquist, G (1998). Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62, 667683.CrossRefGoogle ScholarPubMed
De Clerck, O, Bogaert, K & Leliaert, F (2012). Diversity and evolution of algae: Primary endosymbiosis. In: Genomic insights into the biology of algae. Adv Bot Res 64(Chap. 2), 5586.Google Scholar
Eloranta, P, Kwadrans, J & Kusel-Fetzmann, E (2011). Rhodophyta and Phaeophyceae. Freshwater Flora of Central Europe, vol. 7. Spectrum: Springer.Google Scholar
Elster, J (1999). Algal versatility in various extreme environments. In Enigmatic Microorganisms and Life in Extreme Environments, Seckbach, J (Ed.), pp. 217227. Dordrecht: Kluwer Academic Publishers.Google Scholar
Figueroa, FL, Aguilera, J & Niell, FX (1995). Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur J Phycol 30, 1118. doi:10.1080/09670269500650761CrossRefGoogle Scholar
Glazer, AN, Chan, CF, Karsten, U & West, JA (1994). Salinity tolerance, biliproteins, and floridoside content of Compsopogon coeruleus (Rhodophyta). J Phycol 30, 457461.CrossRefGoogle Scholar
Glazer, AN, Chan, CF & West, JA (1997). An unusual phycocyanobilin-containing phycoerythrin of several bluish-colored, acrochaetioid, freshwater red algal species. J Phycol 33, 617624.CrossRefGoogle Scholar
Gonzalez-Silvera, D, Pérez, S, Korbee, N, López-Figueroa, F, Asencio, AD & Aboal, M (2017). Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta). J Phycol 53, 9991009.CrossRefGoogle Scholar
Götz, T, Windhövel, U, Böger, P & Sandmann, G (1999). Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of cyanobacterium Synechococcus PCC7942. Plant Physiol 120, 559604.CrossRefGoogle ScholarPubMed
Grigoryeva, N (2020). Fluorescence Methods for Investigation of Living Cells and Microorganisms. St Petersburg Federal Research Center of Russian Academy of Sciences, Scientific Research Centre for Ecological Safety.CrossRefGoogle Scholar
Grigoryeva, N. & Chistyakova, L. (2018). Fluorescence microscopic spectroscopy for investigation and monitoring of biological diversity and physiological state of cyanobacterial cultures. In Cyanobacteria, Tiwari, A (Ed.), pp. 1144. London: IntechOpen. doi:10.5772/intechopen.78044.Google Scholar
Grobe, CW & Murphy, TM (1997). Artificial ultraviolet-B radiation and cell expansion in the intertidal alga Ulva expansa (Setch.) S. and G. (Chlorophyta). J Exp Mar Biol Ecol 217, 209223.CrossRefGoogle Scholar
Häder, DP, Kumar, HD, Smith, RC & Worrest, RC (2003). Aquatic ecosystems: Effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci 2, 3950.CrossRefGoogle ScholarPubMed
Hindak, F & Hindakova, A (2015). Second European collection of Chroothece mobilis Pascher & Petrová, a microscopic red alga, from a fen of Mociar at Stankovany (C. Slovakia). Limnologicky Spravodajca 9, 712.Google Scholar
Huovinen, P, Gomez, I & Lovengreen, C (2006). A five-year study of solar ultraviolet radiation in southern Chile (39°S): Potential impact on physiology of coastal marine algae? Photochem Photobiol 82, 515522.CrossRefGoogle ScholarPubMed
Jiang, L, Wang, Y, Yin, Q, Liu, G, Liu, H, Huang, Y & Li, B (2017). Phycocyanin: A potential drug for cancer treatment. J Cancer 8, 34163429. doi:10.7159/jca.21058CrossRefGoogle ScholarPubMed
Kana, R, Prásil, O, Komárek, O, Papageorgiou, GC & Govindjee, R (2009). Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp. (PCC 7942). Biochim Biophys Acta (BBA)-Bioenergetics 1878, 11701178.CrossRefGoogle Scholar
Kieleck, C, Bousquet, B, Le Brun, G, Cariou, J & Lotrian, J (2001). Laser induced fluorescence imaging: Application to groups of macroalgae identification. J Phys D: Appl Phys 34, 25612571.CrossRefGoogle Scholar
Kirilovsky, D & Kerfeld, CA (2013). The orange carotenoid protein: A blue–green light photoactive protein. Photochem Photobiol Sci 12, 11351143.CrossRefGoogle ScholarPubMed
Kushibiki, A, Yokoyama, A, Iwataki, M, Yokoyama, J, West, JA & Hara, Y (2012). New unicellular red alga, Bulboplastis apyrenoidosa gen. et sp. nov. (Rhodellophyceae, Rhodophyta) from the mangroves of Japan: Phylogenetic and ultrastructural observations. Phycol Res 60, 114122. doi:10.1111/j.1440–1835.2012.00643CrossRefGoogle Scholar
Lu, C & Vonshak, A (2002). Effects of salinity stress on PSII function in cyanobacterial Spirulina platensis cells. Physiol Plant 114, 405413.CrossRefGoogle ScholarPubMed
Luimstra, VM, Schuurmans, JM, Verschoor, AM, Hellingwerf, KJ, Huisman, J & Matthijs, HCP (2018). Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth Res 138, 177189.CrossRefGoogle ScholarPubMed
MacIntyre, HL, Lawrenz, E & Richardson, TL. (2010). Taxonomic discrimination of phytoplankton by spectral fluorescence. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. Developments in Applied Phycology, Sugget, D, Prášil, O & Borowitzka, Ml (eds) vol. 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9268-7_7Google Scholar
Makarov, M (1999). Influence of ultraviolet radiation on the growth of the dominant macroalgae of the Barents Sea. Chemosphere: Glob Change Sci 1, 461467.Google Scholar
Markou, G. (2014). Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semicontinuous mode. Appl Biochem Biotechnol Part A: Enzyme Engineering and Biotechnology. doi:10.1007/s12010–014–0727–3.CrossRefGoogle Scholar
Marraskuranto, E., Raharjo, T., Kasiamdari, R.S. & Nuringtyas, T.R. (2018). Influence of salinity on growth and phycoerythrin production of Rhodomonas salina. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology 13(3) doi:10.15578/SQUALEN.V13I3.365CrossRefGoogle Scholar
Marsac, NTd (1977). Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130, 8291.CrossRefGoogle Scholar
Mihova, SG, Georgiev, DI, Monkova, KM & Tchernov, AA (1996). Phycobiliproteins in Rhodella reticulata and photoregulatory effects on their content. J Biotechnol 48, 251257.CrossRefGoogle Scholar
Millach, L, Obiol, A, Solé, A & Esteve, I (2017). A novel method to analyze in vivo the physiological state and cell viability of phototrophic microorganisms by confocal laser scanning microscopy using a dual laser. J Microsc 268, 5365.CrossRefGoogle Scholar
Millach, L, Villagrasa, E, Solé, A & Esteve, I (2019). Combined confocal laser scanning microscopy technics for a rapid assessment of the effect and cell viability of scenedesmus sp. DE 2009 under metal stress. Microsc Microanal 25, 981003. doi:10.1017/S143192761901465XCrossRefGoogle Scholar
Nan, F, Feng, J, Lu, J, Liu, Q, Fang, K, Gong, C & Xie, S (2017). Origin and evolutionary history of freshwater Rhodophyta: Further insights based on phylogenomic evidence. Sci Rep 7, 2934. doi:10.1038/s41598–017–03235–5.CrossRefGoogle ScholarPubMed
Nedunchezhian, N & Kulandaivelu, G (1996). Effect of UV-B enhanced radiation on ribulose-1,5-bisphosphate carboxylase in leaves of Vigna sinensis L. Photosynthetica 25, 431435.Google Scholar
Neu, TR, Kuhlicke, U & Lawrence, JR (2002). Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms. Appl Environ Microbiol 68, 901909. doi:10.1128/AEM.68.2.901–909CrossRefGoogle ScholarPubMed
Pandey, S, Acree, WE Jr & Fetzer, JC (1997). Cetylpyridinium chloride micelles as a selective fluorescence quenching solvent media for discriminating between alternat versus nonalternat polycyclic aromatic hydrocarbons. Talanta 45, 3945.CrossRefGoogle Scholar
Pascher, A & Petrová, J (1931). Über porenapparate und bewegung bei einer neuen bangiale (Chroothece mobilis). Arch Protistenkunde 74, 490522.Google Scholar
Pentecost, A (2011). Some observations on travertine algae from Stjáni hot spring, Lýsuhóll, Iceland. Nord 29, 741745.Google Scholar
Peter, C, Thomas, S, Koch, F, Sartoris, FJ & Bickmeyer, U (2020). Sponge-derived Ageladine A affects the in vivo fluorescence emission spectra of microalgae. PLoS One 15(11), e0242464. doi:10.1371/journal.pone.0242464.CrossRefGoogle ScholarPubMed
Poniedzialek, B, Falfushynska, HI & Rzymski, P (2017). Flow cytometry as a valuable tool to study cyanobacteria: A mini-review. Limnol Rev 17, 8995.CrossRefGoogle Scholar
Poryvkina, L, Babichenko, S & Leeben, A (2000). Analysis of phytoplankton pigments by excitation spectra of fluorescence. Proceedings of EARsel-SIG Workshop, Lidar Remote Sensing of Land and Sea, Dresden/FRG, June 16–17.Google Scholar
Ramírez, O, García, A, Rojas, R, Couve, A & Härtel, S (2010). Confined displacement algorithm determines true and random localization in fluorescence microscopy. J Microsc 239, 173183.CrossRefGoogle Scholar
R core Team (2020). A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, https://.R-project.org/.Google Scholar
Ritz, M, Thomas, J-C, Spilar, A & Etienne, A-L (2000). Kinetics of photoacclimation in response to a shift to high light of red alga Rhodella violacea adapted to low irradiance. Plant Physiol 123, 14151425.CrossRefGoogle ScholarPubMed
Roldán, M, Ascaso, C & Wierzchos, J (2014). Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. Appl Environ Microbiol 80, 29983006.CrossRefGoogle ScholarPubMed
Roldán, M, Oliva, F, Gónzalez del Valle, MA, Saiz-Jimenez, C & Hernández-Mariné, M (2006). Does green light influence the fluorescence properties and structure of phototrophic biofilms? Appl Environ Microbiol 72, 30263031. doi:10.1128/AEM.72.4.3026–3031.2006CrossRefGoogle ScholarPubMed
Roldán, M, Thomas, F, Castell, S, Quesada, A & Hernández-Mariné, M (2004). Non invasive pigment identification in single cells from living phototrophic biofilms by confocal imaging spectrofluorometry. Appl Environ Microbiol 70, 37453750. doi:10.1128/AEM.70.6.3745–3750.2004Google Scholar
Schmidt, ÉC, dos santos Pereira, RW, Gouveia, C, Costa, GB, Faria, GSM, Scherner, F, Horta, PA, Martins, RP, Latini, A, Ramlov, F & Bouzon, ZL (2012). Responses of the macroalgae Hypnea musciformis after in vitro exposure to UV-B. Aquat Bot 100, 817.CrossRefGoogle Scholar
Sharma, G., Kumar, M., Ali, M.I. & Jasuja, N.D. (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycoacyanin, allophycocyanin and phycoerthtin accumulation. JMBT 6, 4. doi:10.4172/1948-5948.1000144.CrossRefGoogle Scholar
Simeunovic, J, Beslin, K, Svircev, Z, Kovac, D & Babic, O (2013). Impact of nitrogen and drought on phycobiliprotein content in terrestrial cyanobacterial strains. J Appl Phycol 25, 597607. doi:10.1007/s10811–012–9894–1CrossRefGoogle Scholar
Singh, S & Montgomery, BL (2013). Salinity impacts photosynthetic pigmentation and cellular morphology changes by distinct mechanisms in Fremyella diplosiphon. Biochem Biophys Res Commun 433, 8489.CrossRefGoogle ScholarPubMed
Solé, A, Diestra, E & Esteve, I (2009). Confocal Laser scanning microscopy image analysis for cyanobacterial biomass determined at microscale level in different microbial mats. Microb Ecol 57, 649656.CrossRefGoogle ScholarPubMed
Thomas, J-C & Passaquet, C (1999). Characterization of a phycoerythrin without a-subunits from a unicellular red alga. J Biol Chem 274, 24722482.CrossRefGoogle Scholar
Toole, CM & Allnutt, FCT (2003). Red, cryptomonad and glaucocystophyte algal phycobiliproteins. In Photosynthesis in Algae. Advances in Photosynthesis and Respiration 14, Larkum, AWD, Douglas, SE & Raven, JA (Eds.), pp. 305334. Dordrecht: Springer. doi:10.1007/978–94–007–1038_14.Google Scholar
Topinka, JA, Korjeff Bellows, W & Yentsch, CS (1990). Characterization of marine macroalgae by fluorescence signatures. Int J Remote Sens 11, 23292335.CrossRefGoogle Scholar
Wang, G, Chen, K, Chen, L, Hu, C, Zhang, D & Liu, Y (2008). The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotox Environ Safe 69, 150157.CrossRefGoogle ScholarPubMed
Wang, G, Hu, C, Li, D, Zhang, D, Li, X, Chen, K & Liu, Y (2007). The response of antioxidant system in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants. Adv Space Res 39, 103410412.CrossRefGoogle Scholar
Whitton, B.A. (ed.) (2012). Ecology of Cyanobacteria II. Their Diversity in Space and Time. Dordrecht: Springer.CrossRefGoogle Scholar
Wolf, E & Schüssler, A (2005). Phycobiliprotein fluorescence of Nostoc punctiforme changes during the life cycle and chromatic adaptation: Characterization by spectral confocal laser scanning microscopy and spectral unmixing. Plant, Cell Environ 28, 480491.CrossRefGoogle Scholar
Wulff, A, Mohlin, M & Sundbäck, K (2007). Intraspecific variation in the response of the cyanobacterium Nodularia spumigena to moderate UV-B radiation. Harmful Algae 6, 388399.CrossRefGoogle Scholar
Xu, J & Gao, K (2010). UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). J Photochem Photobiol B 100, 117122.CrossRefGoogle Scholar
Yoon, H.S., Zuccarello, G.C. & Bhattacharya, D. (2010). In Red Algae in the Genomic Age, Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J. & Chapman, D.J. (Eds.), vol. 13, pp. 2542. Springer Science + Business Media B.V. doi:10.1007/978–90–481–3795–4_2.CrossRefGoogle Scholar
Yu, P., Wu, Y., Wang, G., Jia, T. & Zhang, Y. (2016). Purification and bioactivities of phycocyanin. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1167668.Google Scholar
Zeeshan, M & Prasad, SM (2009). Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. S Afr J Bot 75, 466474.CrossRefGoogle Scholar