Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T19:07:22.642Z Has data issue: false hasContentIssue false

The Conserved Tetrameric Subunit Stoichiometry of Slc26 Proteins

Published online by Cambridge University Press:  03 May 2013

Richard Hallworth*
Affiliation:
Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
Kelsey Stark
Affiliation:
Department of Biology, Doane College, Crete, NE 68333, USA
Lyandysha Zholudeva
Affiliation:
Department of Physics, Creighton University, Omaha, NE 68178, USA
Benjamin B. Currall
Affiliation:
Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA
Michael G. Nichols
Affiliation:
Department of Physics, Creighton University, Omaha, NE 68178, USA
*
*Corresponding author. E-mail: hallw@creighton.edu
Get access

Abstract

The Slc26 family proteins, with one possible exception, transport anions across membranes in a wide variety of tissues in vertebrates, invertebrates, and plants. Mutations in human members of the family are a significant cause of disease. Slc26 family proteins are thought to be oligomers, but their stoichiometry of association is in dispute. A recent study, using sequential bleaching of single fluorophore-coupled molecules in membrane fragments, demonstrated that mammalian Slc26a5 (prestin) is a tetramer. In this article, the stoichiometry of two nonmammalian prestins and three human SLC26 proteins has been analyzed by the same method, including the evolutionarily-distant SLC26A11. The analysis showed that tetramerization is common and likely to be ubiquitous among Slc26 proteins, at least in vertebrates. The implication of the findings is that tetramerization is present for functional reasons.

Type
Omaha Imaging Symposium
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, J.P., Surguchev, A., Montoya, S., Aronson, P.S., Santos-Sacchi, J. & Navaratnam, D. (2009). Prestin's anion transport and voltage-sensing capabilities are independent. Biophys J 96, 31793186.CrossRefGoogle ScholarPubMed
Compton, E.L., Karinou, E., Naismith, J.H., Gabel, F. & Javelle, A. (2011). Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains. J Biol Chem 286, 2705827067.Google Scholar
Currall, B., Jensen-Smith, H. & Hallworth, R. (2011a). Homo- and hetero-oligomerization in the Slc26a protein family. In What Fire is in Mine Ears: Progress in Auditory Biomechanics, Shera, C.A. & Olson, E.S. (Eds.), pp. 148153. Melville, NY: American Institute of Physics.Google Scholar
Currall, B., Rossino, D., Jensen-Smith, H. & Hallworth, R. (2011b). The roles of conserved and nonconserved cysteinyl residues in the oligomerization and function of mammalian prestin. J Neurophysiol 106, 23582367.Google Scholar
Dallos, P., Wu, X., Cheatham, M.A., Gao, J., Zheng, J., Anderson, C.T., Jia, S., Wang, X., Cheng, W.H., Sengupta, S., He, D.Z. & Zuo, J. (2008). Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58, 333339.Google Scholar
Das, S.K., Darshi, M., Cheley, S., Wallace, M.I. & Bayley, H. (2007). Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits. Chembiochem 8, 994999.Google Scholar
Detro-Dassen, S., Schanzler, M., Lauks, H., Martin, I., zu Berstenhorst, S.M., Nothmann, D., Torres-Salazar, D., Hidalgo, P., Schmalzing, G. & Fahlke, C. (2008). Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J Biol Chem 283, 41774188.CrossRefGoogle ScholarPubMed
Durisic, N., Godin, A.G., Wever, C.M., Heyes, C.D., Lakadamyali, M. & Dent, J.A. (2012). Stoichiometry of the human glycine receptor revealed by direct subunit counting. J Neurosci 32, 1291512920.Google Scholar
Hallworth, R. & Nichols, M.G. (2012). Prestin in HEK cells is an obligate tetramer. J Neurophysiol 107, 511.Google Scholar
Ji, W., Xu, P., Li, Z., Lu, J., Liu, L., Zhan, Y., Chen, Y., Hille, B., Xu, T. & Chen, L. (2008). Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci USA 105, 1366813673.Google Scholar
Jones, D.T., Taylor, W.R. & Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3), 275282.Google ScholarPubMed
Kere, J. (2006). Overview of the SLC26 family and associated diseases. In Epithelial Anion Transport in Health and Disease: The Role of the SLC26 Transporters Family. Hoboken, NJ: John Wiley & Sons, Inc. Google Scholar
Liberman, M.C., Gao, J., He, D.Z., Wu, X., Jia, S. & Zuo, J. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419, 300304.CrossRefGoogle ScholarPubMed
Liu, X.Z., Ouyang, X.M., Xia, X.J., Zheng, J., Pandya, A., Li, F., Du, L.L., Welch, K.O., Petit, C., Smith, R.J., Webb, B.T., Yan, D., Arnos, K.S., Corey, D., Dallos, P., Nance, W.E. & Chen, Z.Y. (2003). Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet 12, 11551162.CrossRefGoogle Scholar
Madl, J., Weghuber, J., Fritsch, R., Derler, I., Fahrner, M., Frischauf, I., Lackner, B., Romanin, C. & Schutz, G.J. (2011). Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells. J Biol Chem 285, 4113541142.CrossRefGoogle Scholar
Mio, K., Kubo, Y., Ogura, T., Yamamoto, T., Arisaka, F. & Sato, C. (2008). The motor protein prestin is a bullet-shaped molecule with inner cavities. J Biol Chem 283, 11371145.CrossRefGoogle ScholarPubMed
Mistrik, P., Daudet, N., Morandell, K. & Ashmore, J.F. (2012). Mammalian prestin is a weak Cl- / HCO3- electrogenic antiporter. J Physiol 590, 55975610.Google Scholar
Pasqualetto, E., Seydel, A., Pellini, A. & Battistutta, R. (2008). Expression, purification and characterisation of the C-terminal STAS domain of the SLC26 anion transporter prestin. Protein Expres Purif 58, 249256.Google Scholar
Penna, A., Demuro, A., Yeromin, A.V., Zhang, S.L., Safrina, O., Parker, I. & Cahalan, M.D. (2008). The CRAC channel consists of a tetramer formed by STIM-induced dimerization of Orai dimers. Nature 456, 116120.CrossRefGoogle ScholarPubMed
Porra, V., Bernier-Valentin, F., Trouttet-Masson, S., Berger-Dutrieux, N., Peix, J.L., Perrin, A., Selmi-Ruby, S. & Rousset, B. (2002). Characterization and semiquantitative analyses of pendrin expressed in normal and tumoral human thyroid tissues. J Clin Endocrinol Metab 87, 17001707.CrossRefGoogle ScholarPubMed
Schaechinger, T.J. & Oliver, D. (2007). Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proc Natl Acad Sci USA 104, 76937698.CrossRefGoogle ScholarPubMed
Schanzler, M. & Fahlke, C. (2012). Anion transport by the cochlear motor protein prestin. J Physiol 590, 259272.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 27312739.CrossRefGoogle ScholarPubMed
Tang, J., Pecka, J.L., Tan, X., Beisel, K.W. & He, D.Z. (2012). Engineered pendrin protein, an anion transporter and molecular motor. J Biol Chem 286, 3101431021.Google Scholar
Teek, R., Oitmaa, E., Kruustuk, K., Zordania, R., Joost, K., Raukas, E., Tonisson, N., Gardner, P., Schrijver, I., Kull, M. & Ounap, K. (2009). Splice variant IVS2-2A>G in the SLC26A5 (Prestin) gene in five Estonian families with hearing loss. Int J Pediatr Otorhinolaryngol 73, 103107.Google Scholar
Toth, T., Deak, L., Fazakas, F., Zheng, J., Muszbek, L. & Sziklai, I. (2007). A new mutation in the human pres gene and its effect on prestin function. Int J Mol Med 20, 545550.Google ScholarPubMed
Ulbrich, M.H. & Isacoff, E.Y. (2007). Subunit counting in membrane-bound proteins. Nat Methods 4, 319321.Google Scholar
Wang, X., Yang, S., Jia, S. & He, D.Z. (2010). Prestin forms oligomer with four mechanically independent subunits. Brain Res 1333, 2835.CrossRefGoogle ScholarPubMed
Zheng, J., Du, G.G., Anderson, C.T., Keller, J.P., Orem, A., Dallos, P. & Cheatham, M. (2006). Analysis of the oligomeric structure of the motor protein prestin. J Biol Chem 281, 1991619924.Google Scholar