Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-29T15:09:38.143Z Has data issue: false hasContentIssue false

Development and Application of Ultrafast Transmission Electron Microscope Based on Schottky Field Emission

Published online by Cambridge University Press:  30 July 2020

Jianqi Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
HuaiXin Yang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
HuanFang Tian
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Z. A. Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Z W Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
C H Zhu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
P Xu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
D G Zheng
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
J Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Electron Pulses as an Ultrafast Probe for Non-Equilibrium Processes
Copyright
Copyright © Microscopy Society of America 2020

References

Zewail, A.H., et al. Science 328 (2010) 187-193.10.1126/science.1166135CrossRefGoogle Scholar
Browning, N.D., et al. , Chem. Phys. Chem. 11 (2010) 781-782.10.1002/cphc.200900937CrossRefGoogle Scholar
Baum, P., et al. , PNAS 104 (2007) 18409-18414.10.1073/pnas.0709019104CrossRefGoogle Scholar
Morimoto, Y., et al. , Nat. Phys. 14 (2018) 252-256.10.1038/s41567-017-0007-6CrossRefGoogle Scholar
van der Veen, R.M., et al. , Nat. Chem. 5 (2013) 395-402.10.1038/nchem.1622CrossRefGoogle Scholar
Berruto, G., et al. , Phys. Rev. Lett, 120 (2018) 117201.10.1103/PhysRevLett.120.117201CrossRefGoogle Scholar
Carbone, F., et al. , Chem. Phys. Lett. 468 (2009) 107-111.10.1016/j.cplett.2008.12.027CrossRefGoogle Scholar
Piazza, L., et al. , Struct. Dyn. 1, (2014) 014501.10.1063/1.4835116CrossRefGoogle Scholar
Carbone, F., et al. , Struct. Dyn. 2 (2015) 020601.10.1063/1.4918727CrossRefGoogle Scholar
Barwick, B., et al. , Nature 462 (2009) 902-906.10.1038/nature08662CrossRefGoogle Scholar
Zhu, C.H., Zheng, D.G., et al. , Ultramicroscopy 209, 112887 (2020).10.1016/j.ultramic.2019.112887CrossRefGoogle Scholar
Li, Z. W., Xiao, R.J., et al. , ACS Nano 13, 11623 (2019)]; Z. W. Li, S. Sun, et al., Nanoscale, 9, 13313 (2017).10.1021/acsnano.9b05466CrossRefGoogle Scholar
Zhang, M., Cao, G., Tian, H., et al. , Physical Review B, 96, 174203 (2017).10.1103/PhysRevB.96.174203CrossRefGoogle Scholar
Sun, K., Sun, S., Zhu A, C.. et al. , Science Advances, 4 , eaas9660 (2018).10.1126/sciadv.aas9660CrossRefGoogle Scholar
Yang, H., Song, S., Zhang, M., et al. , Chin. Phys. B, 27, 70703 (2018).10.1088/1674-1056/27/7/070703CrossRefGoogle Scholar
[16] This work was supported by the National Key Research and Development Program of China under Grant Nos. 2016YFA0300303, 2017YFA0504703, and 2017YFA0302904, 2017YFA0303000, the National Basic Research Program of China under Grant No. 2015CB921304.Google Scholar