Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-19T02:05:34.377Z Has data issue: false hasContentIssue false

Electron Microscopy and Electron Energy-Loss Spectroscopy Study of Nd1−xSrxCoO3−δ (0≤x≤1) System

Published online by Cambridge University Press:  28 February 2014

Khalid Boulahya*
Affiliation:
Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Manar Hassan
Affiliation:
Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Jesús C.G. Minguez
Affiliation:
Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
Stavros Nicolopoulos
Affiliation:
NanoMEGAS, Boulvard Edmond Machtens 79, 1080 Bruxelles, Belgium
*
*Corresponding author. khalid@quim.ucm.es
Get access

Abstract

A solid solution of Nd1−xSrxCoO3−δ (with x=0, 1/3, 2/3, and 1) has been prepared and characterized by a combination of X-ray diffraction, electron microscopy, and electron energy-loss spectroscopy (EELS). The structural characterization indicates that Nd-doped materials present an orthorhombic symmetry with a=√2xap, b=√2xap, and c=2xap (ap refers to lattice parameter of simple cubic perovskite), while SrCoO2.5 has an orthorhombic symmetry with a=√2xap, b=4xap, and c=√2xap. EELS analysis revealed that Co are in 3+ oxidation states but in different spin configurations.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arevalo-Lopez, A., Castillo-Martinez, E. & Alario-Franco, M.A. (2008). Electron energy loss spectroscopy in ACrO3 (A=Ca, Sr and Pb) perovskites. J Phys Condens Matter 20, 505207, 16.CrossRefGoogle Scholar
Briceno, G., Xiang, X.D., Change, H., Sun, X. & Schultz, P.G. (1995). A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270, 273275.CrossRefGoogle Scholar
Deng, Z.Q., Yang, W.S., Liu, W. & Chen, C.S. (2006). Relationship between transport properties and phase transformations in mixed-conducting oxides. J Solid State Chem 179, 362369.CrossRefGoogle Scholar
Grenier, J.G., Ghodbane, S., Demazeau, G., Pouchard, M. & Hagenmuller, P. (1979). Le cobaltite de strontium Sr2Co2O5: Caracterisation et proprietes magnétiques. Mater Res Bull 14, 831839.Google Scholar
Harrison, W.T.A., Hegwood, S.L. & Jacobson, A.J. (1995). A powder neutron diffraction determination of the structure of Sr6Co5O15, formerly described as the low-temperature hexagonal form of SrCoO3–x . J Chem Soc Chem Commun, 19531954.CrossRefGoogle Scholar
Kitta, M., Akita, T., Tanaka, S. & Kohyama, M. (2013). Characterization of two phase distribution in electrochemically lithiated spinel Li4Ti5O12 secondary particles by electron energy-loss spectroscopy. J Power Sources 237, 2632.CrossRefGoogle Scholar
Letoquin, R., Paukus, W., Cousson, A., Prestipino, C. & Lamberti, C. (2006). Time-resolved in situ studies of oxygen intercalation into SrCoO2.5, performed by neutron diffraction and X-ray absorption spectroscopy. J Am Chem Soc 128, 1316113174.Google Scholar
Petrov, A.N., Kononchuk, O.F., Andreev, A.V., Cherepanov, V.A. & Kofstad, P. (1995). Crystal structure, electrical and magnetic properties of La1−x Sr x CoO3−y . Solid State Ionics 80, 189199.CrossRefGoogle Scholar
Podlesnyak, A., Streule, S., Mesot, J., Medarde, M., Pomjakushina, E., Conder, K., Tanaka, A., Haverkort, M.W. & Khomskii, D.I. (2006). Spin-state transition in LaCoO3: Direct neutron spectroscopic evidence of excited magnetic states. Phys Rev Lett 97, 247208, 14.CrossRefGoogle ScholarPubMed
Radtke, G. & Botton, G.A. (2011). Energy loss near-edge structures. In Scanning Transmission Electron Microscopy Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 207245. New York: Springer Science Business Media.CrossRefGoogle Scholar
Stoyanov, E., Langenhorst, F. & Steinle-Neumann, G. (2007). The effect of valence state and site geometry on Ti L 3,2 and O K electron energy-loss spectra of TixOy phases. Am Mineral 92, 577586.CrossRefGoogle Scholar
Takeda, T., Yamagushi, Y., Watanabe, H., Tomiyoshi, S. & Yamamoto, H. (1969). Crystal and magnetic structures of Sr2Fe2O5 . J Phys Soc Jpn 26, 1320.CrossRefGoogle Scholar
Takeda, Y., Kanno, R., Takada, T., Yamamoto, O., Takano, M. & Bando, Y.Z. (1986). Phase relation and oxygen-non-stoichiometry of perovskite-like compound SrCoOx (2.29<x>2.80). Z Anorg Allg Chem 540, 259270.Google Scholar
Varela, M., Gazquez, J., Pennycook, T.J., Magen, C., Oxley, M.P. & Pennycook, S.J. (2011). Applications of aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy to complex oxide materials. In Scanning Transmission Electron Microscopy Imaging and Analysis, Pennycook, S.J. & Nellist, P.D. (Eds.), pp. 429467. New York: Springer Science Business Media.CrossRefGoogle Scholar
Wang, X.L., Sakurai, H. & Takayama-Muromashi, E.J. (2005). Synthesis, structures, and magnetic properties of novel Ruddlesden–Popper homologous series Srn+1ConO3n+1 (n=1,2,3,4, and ∞). Appl Phys 97, 13.Google Scholar