Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T19:19:49.860Z Has data issue: false hasContentIssue false

Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens

Published online by Cambridge University Press:  23 February 2017

Ping Lu*
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185, USA
Renliang Yuan
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W Green St, Urbana, IL 61801, USA
Jian Min Zuo
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, 1304 W Green St, Urbana, IL 61801, USA
*
*Corresponding author: plu@sandia.gov
Get access

Abstract

Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.

Type
Materials Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, L.J., D’Alfonso, A.J., Freitag, B. & Klenov, D.O. (2012). Chemical mapping at atomic resolution using energy-dispersive X-ray spectroscopy. MRS Bull 37, 4752.CrossRefGoogle Scholar
Allen, L.J., Findlay, S.D., Lupini, A.R., Oxley, M.P. & Pennycook, S.J. (2003). Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. Phys Rev Lett 91, 105503.CrossRefGoogle ScholarPubMed
Bosman, M., Keast, V.J., García-Muñoz, J.L., D’Alfonso, A.J.,Findlay, S.D. & Allen, L.J. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.CrossRefGoogle ScholarPubMed
Browning, N.D., Chisholm, M.F. & Pennycook, S.J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143.CrossRefGoogle Scholar
Cherns, D., Howie, A. & Jacobs, M.H. (1973). Characteristic X-ray production in thin crystals. Z Naturforsch 28 A, 565571.CrossRefGoogle Scholar
Chen, Z., Weyland, M., Sang, X., Xu, W., Dycus, J.H., LeBeau, J.M., D’Alfonso, A.J., Allen, L.J. & Findlay, S.D. (2016). Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy. Ultramicroscopy 168, 716.CrossRefGoogle ScholarPubMed
Chu, M.W., Liou, S.C., Chang, C.P., Choa, F.S. & Chen, C.H. (2010). Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-corrected electron microscope. Phys Rev Lett 104, 196101.CrossRefGoogle Scholar
Cowley, J.M. (1984). Diffraction Physics, 2nd ed. New York: Elsevier Science Publishing.Google Scholar
D’Alfonso, A.J., Freitag, B., Klenov, V. & Allen, L.J. (2010). Atomic-resolution chemical mapping using energy-dispersive X-ray spectroscopy. Phys Rev B 81, 100101.CrossRefGoogle Scholar
Forbes, B.D., D’Alfonso, A.J., Williams, R.E.A., Srinivasan, R., Fraser, H.L., McComb, D.W., Freitag, B., Klenov, D.O. & Allen, L.J. (2012). Contribution of thermally scattered electrons to atomic resolution elemental maps. Phys Rev B 86, 24108.CrossRefGoogle Scholar
Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y. & Ishizuka, k. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702.CrossRefGoogle Scholar
Kirkland, A.I. & Saxton, W.O. (2002). Cation segregation in Nb16W18O94 using high angle annular dark field scanning transmission electron microscopy and imaging processing. J Microsc 206, 16.CrossRefGoogle Scholar
Lu, P., Romero, E., Lee, S., MacManus-Driscoll, J.L. & Jia, Q. (2014b). Chemical quantification of atomic-scale EDS maps under thin specimen conditions. Microsc Microanal 20, 17821790.CrossRefGoogle ScholarPubMed
Lu, P., Xiong, J., Van Benthem, M. & Jia, Q.X. (2013). Atomic-scale chemical quantification of oxide interfaces using energy-dispersive X-ray spectroscopy. App Phys Lett 102, 173111.CrossRefGoogle Scholar
Lu, P., Yuan, R.L., Ihlefeld, J.F., Spoerke, E.D., Pan, W. & Zuo, J.M. (2016). Fast atomic-scale chemical imaging of crystalline materials and dynamic phase transformations. Nano Lett 16, 27282733.CrossRefGoogle ScholarPubMed
Lu, P., Zhou, L., Kramer, M.J. & Smith, D.J. (2014a). Atomic-scale chemical imaging and quantification of metallic alloy structures by energy-dispersive X-ray spectroscopy. Sci Rep 4, 3945.CrossRefGoogle ScholarPubMed
Muller, D.A., Fitting Kourkoutis, L., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073.CrossRefGoogle ScholarPubMed
Oxley, M.P., Varela, M., Pennycook, T.J., van Benthem, K., Findlay, S.D., D’Alfonso, A.J., Allen, L.J. & Pennycook, S.J. (2007). Interpreting atomic-resolution spectroscopic images. Phys Rev B 76, 064303.CrossRefGoogle Scholar
Saxton, W.O. & Baumeister, W. (1982). The correlation averaging of a regularly arranged bacterial cell envelop protein. J Microsc 127, 127138.CrossRefGoogle Scholar
Spence, J.C.H. & Zuo, J.M. (1992). Electron Microdiffraction. New York: Plenum Press.CrossRefGoogle Scholar
Watanabe, M., Kanno, M. & Okunishi, E. (2010). Atomic-resolution elemental mapping by EELS and XEDS in aberration corrected STEM. JEOL News 45, 815.Google Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Springer.CrossRefGoogle Scholar