Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T20:21:01.641Z Has data issue: false hasContentIssue false

Focal-Series Reconstruction in Low-Energy Electron Microscopy

Published online by Cambridge University Press:  09 April 2014

Thomas Duden*
Affiliation:
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
Andreas Thust
Affiliation:
Ernst Ruska-Centrum (ER-C) and Peter Grünberg Institut (PGI-5), Forschungszentrum Jülich, 52425 Jülich, Germany Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
Christian Kumpf
Affiliation:
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
F. Stefan Tautz
Affiliation:
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany Jülich Aachen Research Alliance (JARA)-Fundamentals of Future Information Technology, 52425 Jülich, Germany
*
*Corresponding author. info@thomas-duden.de
Get access

Abstract

In low-energy electron microscopy (LEEM) we commonly encounter images which, beside amplitude contrast, also show signatures of phase contrast. The images are usually interpreted by following the evolution of the contrast during the experiment, and assigning gray levels to morphological changes. Through reconstruction of the exit wave, two aspects of LEEM can be addressed: (1) the resolution can be improved by exploiting the full information limit of the microscope and (2) electron phase shifts which contribute to the image contrast can be extracted. In this article, linear exit wave reconstruction from a through-focal series of LEEM images is demonstrated. As a model system we utilize a heteromolecular monolayer consisting of the organic molecules 3,4,9,10-perylene tetracarboxylic dianhydride and Cu-II-Phthalocyanine, adsorbed on a Ag(111) surface.

Type
Techniques and Instrumentation Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coene, W., Thust, A., Op de Beeck, M. & Van Dyck, D. (1996). Maximum likelihood method for focus-variation image reconstruction in high-resolution transmission electron microscopy. Ultramicroscopy 64, 109135.Google Scholar
Glöckler, K., Seidel, C., Soukopp, A., Sokolowski, M., Umbach, E., Böhringer, M., Berndt, R. & Schneider, W.-D. (1998). Highly ordered structures and submolecular scanning tunnelling microscopy contrast of PTCDA and DM-PBDCI monolayers on Ag(111) and Ag(110). Surface Science 405, 120.Google Scholar
Häusler, G. (1972). A method to increase the depth of focus by two step image processing. Optics Communications 6(1), 3842.Google Scholar
Koshikawa, T., Shimizu, H., Amakawa, R., Ikuta, T., Yasue, T. & Bauer, E. (2005). A new aberration correction method for photoemission electron microscopy by means of moving focus. J Phys Condens Matter 17(16), S1371.Google Scholar
Kröger, I., Stadtmüller, B., Stadler, C., Ziroff, J., Kochler, M., Stahl, A., Pollinger, F., Lee, T., Zegenhagen, J., Reinert, F. & Kumpf, C. (2010). Submonolayer growth of copper-phthalocyanine on Ag(111). New J Phys 12(8), 083038.Google Scholar
Lichte, H. (1991). Optimum focus for taking holograms. Ultramicroscopy 38, 1322.Google Scholar
Op de Beeck, M., van Dyck, D. & Coene, W. (1996). Wave function reconstruction in HRTEM: The parabola method. Ultramicroscopy 64(1–4), 167183.Google Scholar
Pang, A.B., Müller, Th., Altman, M.S. & Bauer, Ernst (2009). Fourier optics of image formation in LEEM. J Phys Condens Matter 21(31), 314006.CrossRefGoogle ScholarPubMed
Saxton, W.O. (1994). What is the focus variation method? Is it new? Is it direct? Ultramicroscopy 55(2), 171181.Google Scholar
Schiske, P. (1968). Proceedings of 4th European Conference on Electron Microscopy. Tipografia Poliglotta Vaticana, Rome, p. 145.Google Scholar
Schiske, P. (2002). Image reconstruction by means of focus series. J Microsc 207, 154.CrossRefGoogle ScholarPubMed
Schramm, S.M., Pang, A.B., Altman, M.S. & Tromp, R.M. (2012). A contrast transfer function approach for image calculations in standard and aberration-corrected LEEM and PEEM. Ultramicroscopy 115, 88108.Google Scholar
Stadtmüller, B., Lüftner, D., Willenbockel, M., Reinisch, E.M., Sueyoshi, T., Koller, G., Soubatch, S., Ramsey, M.G., Puschnig, P., Tautz, F.S. & Kumpf, C. (2014a). Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces. Nature Communications 5, 3685.Google Scholar
Stadtmüller, B., Hennecke, C., Soubatch, S., Tautz, F.S. & Kumpf, C. (2014b). Tailoring metal-organic hybrid interfaces: Heteromolecular structures on Ag(111). (to be published in 2014).CrossRefGoogle Scholar
Thust, A. (2007). Focal-series reconstruction in HRTEM: Fundamentals and Applications. In 38th IFF Spring School 2007, Forschungszentrum Jülich, ISBN 978-3-89336-462-6.Google Scholar
Thust, A., Coene, W., Op de Beeck, M. & Van Dyck, D. (1996 a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.Google Scholar
Thust, A., Coene, W., Op de Beeck, M. & Van Dyck, D. (1996 b). Numerical correction of lens aberrations in phase-retrieval HRTEM. Ultramicroscopy 64, 249264.Google Scholar
Thust, A. & Rosenfeld, R. (1998). State of the art focal series reconstruction in HRTEM. Proceedings of the 14th International Congress of Electron Microscopy. Cancun, Mexico, (1), p. 119.Google Scholar
Van Gastel, R., Sikharulidze, I., Schramm, S., Abrahams, J.P., Poelsema, B., Tromp, R.M. & van der Molen, S.J. (2009). Medipix 2 detector applied to low energy electron microscopy. Ultramicroscopy 110(1), 3335.CrossRefGoogle ScholarPubMed
Yu, R.P., Kennedy, S.M., Paganin, D.M. & Jesson, D.E. (2010). Phase retrieval low energy electron microscopy. Micron 41(3), 232238.Google Scholar

Duden Supplementary Material

Movie

Download Duden Supplementary Material(Video)
Video 227.8 KB