Skip to main content Accessibility help

High-Resolution TEM and the Application of Direct and Indirect Aberration Correction

  • Crispin J.D. Hetherington (a1), Lan-Yun Shery Chang (a1), Sarah Haigh (a1), Peter D. Nellist (a1), Lionel Cervera Gontard (a2) (a3), Rafal E. Dunin-Borkowski (a2) (a3) and Angus I. Kirkland (a1)...


Aberration correction leads to a substantial improvement in the directly interpretable resolution of transmission electron microscopes. Correction of the aberrations has been achieved electron-optically through a hexapole-based corrector and also indirectly by computational analysis of a focal or tilt series of images. These direct and indirect methods are complementary, and a combination of the two offers further advantages. Materials characterization has benefitted from the reduced delocalization and higher resolution in the corrected images. It is now possible, for example, to locate atomic columns at surfaces to higher accuracy and reliability. This article describes the JEM-2200FS in Oxford, which is equipped with correctors for both the image-forming and probe-forming lenses. Examples of the use of this instrument in the characterization of nanocrystalline catalysts are given together with initial results combining direct and indirect methods. The double corrector configuration enables direct imaging of the corrected probe, and a potential confocal imaging mode is described. Finally, modifications to a second generation instrument are outlined.


Corresponding author

Corresponding author. E-mail:


Hide All


Cervera Gontard, L., Chang, L.-Y., Hetherington, C.J.D., Kirkland, A.I., Ozkaya, D. & Dunin-Borkowski, R.E. (2007). Aberration-correction imaging of active sites on industrial catalyst nanoparticles. Angew Chem 46, 36833685.
Chang, L.-Y., Chen, F.-R., Kirkland, A.I. & Kai, J.J. (2003). Calculations of spherical aberration-corrected imaging behaviour. J Electron Microsc 52, 359364.
Coene, W.M.J., Thust, A., Op De Beeck, M. & Van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.
Eizenberg, M. & Blakely, J.M. (1979). Carbon interaction with nickel surfaces: Monolayer formation and structural stability. J Chem Phys 71, 34673477.
Haider, M., Rose, H., Uhlemann, S., Kabius, B. & Urban, K. (1998a). Electron microscopy image enhanced. Nature 392, 768769.
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998b). A spherical aberration corrected 200kV transmission electron microscope. Ultramicroscopy 75, 5360.
Haigh, S., Kirkland, A.I. & Chang, L.Y. (2006). Aberration corrected tilt series reconstruction. In Proceedings of 16th International Microscopy Congress, Sapporo. Ichinose, H. & Sasaki, T. (Eds.), p. 943. Sapporo, Japan: Japanese Society for Electron Microscopy.
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J.H., Doole, R.C., Hetherington, C.J.D., Kirkland, A.I. & Sawada, H. (2005). A versatile double aberration-corrected, energy filtered TEM/STEM for materials science. Ultramicroscopy 103, 715.
Kirkland, A.I. & Meyer, R.R. (2004). “Indirect” high-resolution transmission electron microscopy: Aberration measurement and wavefunction reconstruction. Microsc Microanal 10, 401413.
Kirkland, A.I., Meyer, R.R. & Chang, L.-Y.S. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.
Kirkland, A.I., Saxton, W.O., Chau, K.L., Tsuno, K. & Kawasaki, M. (1995). Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM. Ultramicroscopy 57, 355374.
Kuglin, C.D. & Hines, D.C. (1975). The phase correlation image alignment method. In Proceedings of the IEEE International Conference on Cybernetics and Society, pp. 163165. New York: IEEE.
Lentzen, M. (2006). Progress in aberration-corrected high-resolution transmission electron microscopy using hardware aberration correction. Microsc Microanal 12, 191205.
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K. & Urban, K. (2002). High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92, 233242.
Lichte, H. (1991). Electron image plane off-axis holography of atomic structures. Adv Opt Elect Microsc 12, 25.
Lin, J.A. & Cowley, J.M. (1986). Calibration of the operating parameters for an HB5 STEM instrument. Ultramicroscopy 19, 3142.
Meyer, R.R., Kirkland, A.I., Dunin-Borkowski, R.E. & Hutchison, J.L. (2000). Experimental characterization of CCD cameras for HREM at 300kV. Ultramicroscopy 85, 913.
Meyer, R., Kirkland, A. & Saxton, W. (2002). A new method for the determination of the wave aberration function for high resolution TEM. 1. Measurement of the symmetric aberrations. Ultramicroscopy 92, 89109.
Meyer, R., Kirkland, A. & Saxton, W. (2004). A new method for the determination of the wave aberration function for high resolution TEM. 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99, 115123.
Mukai, M., Kaneyama, T., Tomita, T., Tsuno, K., Terauchi, M., Tsuda, K., Naruse, M., Honda, T. & Tanaka, M. (2005). Performance of a new monochromator for a 200 kV analytical electron microscope. Microsc Microanal 11(Suppl. 2), 21342135.
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.
Sawada, H., Tomita, T., Naruse, M., Honda, T., Hambridge, P., Hartel, P., Haider, M., Hetherington, C., Doole, R., Kirkland, A., Hutchison, J., Titchmarsh, J. & Cockayne, D. (2005). Experimental evaluation of a spherical aberration-corrected TEM and STEM. J Electron Microsc 54, 119121.
Saxton, W.O. (1988). Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. In Image and Signal Processing in Electron Microscopy. Proceedings of the 6th Pfefferkorn Conference, Niagara, Hawkes, P.W., Ottensmeyer, F.P., Saxton, W.O. & Rosenfeld, A. (Eds.), pp. 213224. Chicago: Scanning Microscopy International.
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronen-Linsen. Optik 2, 114132.
Tillmann, K., Thust, A. & Urban, K. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: Interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc Microanal 10, 185198.
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99, 155166.
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.
Van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.-H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T. & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104.
Zemlin, F. (1979). A practical procedure for alignment of a high resolution electron microscope. Ultramicroscopy 4, 241245.
Zemlin, F., Weiss, K., Schiske, P., Kunath, W. & Herrmann, K.-H. (1978). Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 4960.


Related content

Powered by UNSILO

High-Resolution TEM and the Application of Direct and Indirect Aberration Correction

  • Crispin J.D. Hetherington (a1), Lan-Yun Shery Chang (a1), Sarah Haigh (a1), Peter D. Nellist (a1), Lionel Cervera Gontard (a2) (a3), Rafal E. Dunin-Borkowski (a2) (a3) and Angus I. Kirkland (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.