Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-29T17:59:12.270Z Has data issue: false hasContentIssue false

Implementation and Validation of Multisinusoidal, Fast Impedance Measurements in Atomic Force Microscope Contact Mode

Published online by Cambridge University Press:  02 April 2014

Artur Zieliński*
Affiliation:
Department of Electrochemistry, Corrosion and Materials Engineering, Chemical Faculty, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
Kazimierz Darowicki
Affiliation:
Department of Electrochemistry, Corrosion and Materials Engineering, Chemical Faculty, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
*
*Corresponding author.ziela@chem.pg.gda.pl
Get access

Abstract

This study presents a novel approach to impedance measurements. The methodology discussed is limited to contact in the sample-probe system under ambient conditions without the presence of electrolyte. Comparison with results of direct and alternating current measurements for well-defined metallic surfaces are made. In spite of idealization related to the type of contact examined, the proposed technique provides an improvement of traditional impedance measurement related to sequential changes in system perturbation compared with the sine wave superposition type.

Type
Techniques and Instrumentation Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Binnig, G., Quate, C.F. & Gerber, C. (1986). Atomic force microscope. Phys Rev Lett 56(9), 930934.Google Scholar
Boukamp, B. (1986). A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20, 3144.Google Scholar
Creason, S.C. & Smith, D.E. (1972). Fourier transform Faradaic admittance measurements: I. Demonstration of the applicability of random and pseudo-random noise as applied potential signals. J Electroanal Chem Interfacial Electrochem 36(1), A1A7.Google Scholar
Darowicki, K. & Ryl, J. (2008). Impedance monitoring of carbon steel cavitation erosion under the influence of corrosive factors. J Electrochem Soc 155, 4447.Google Scholar
Darowicki, K. & Ślepski, P. (2003). Dynamic electrochemical impedance spectroscopy of the first order electrode reaction. J Electroanal Chem 547(1), 18.Google Scholar
De Levie, R. & Husovsky, A.A. (1969). Instrument for the automatic measurement of the electrode admittance. J Electroanal Chem Interfacial Electrochem 20(2), 181193.Google Scholar
De Wolf, P., Snauwaert, J., Clarysse, T., Vandervorst, W. & Hellemans, L. (1995). Characterization of a point-contact on silicon using force microscopy-supported resistance measurements. Appl Phys Lett 66(12), 15301532.Google Scholar
Eyben, P., Xu, M., Duhayon, N., Clarysse, T. & Callewaert, S. (2002). Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling. J Vac Sci Technol B 20(1), 471478.Google Scholar
Gabrielli, C. (1981). Identification of electrochemical processes by frequency response analysis, Monograph reference 004/83, Solartron Instrumentation Group, Farnsborough, England.Google Scholar
Guo, D.-Z., Hou, S.-M., Zhang, G.-M. & Xue, Z.-Q. (2006). Conductance fluctuation and degeneracy in nanocontact between a conductive AFM tip and granular surface under small-load conditions. Appl Surf Sci 252, 51495175.Google Scholar
Houze, F., Meyer, R., Schneegans, O. & Boyer, L. (1996). Imaging the local electrical properties of metal surfaces by atomic force microscopy with conductive probes. Appl Phys Lett 69, 19751977.Google Scholar
Kozielski, L., Adamczyk, M. & Pilch, M. (2012). Comparison study of macro and micro scale AC and DC conductivity measurements with impedance spectroscopy and atomic force microscopy techniques applied in PBZT ceramics. Ceramics Int 38(4), 31053109.Google Scholar
Kruempelmann, J., Balabajew, M., Gellert, M. & Roling, B. (2011). Quantitative nanoscopic impedance measurements on silver-ion conducting glasses using atomic force microscopy combined with impedance spectroscopy. Solid State Ionics 198(1), 1621.Google Scholar
Layson, A., Gadad, S. & Teeters, D. (2003). Resistance measurements at the nanoscale: Scanning probe AC impedance spectroscopy. Electrochim Acta 48(14−16), 22072213.Google Scholar
McKubre, M.C.H. & Macdonald, D.D. (2005). Measuring techniques and data analysis. In Impedance Spectroscopy. Theory, Experiment, and Applications, Barsoukov E. & Macdonald J.R. (Eds.), pp. 129167. Hoboken: John Wiley & Sons.Google Scholar
O’Hayre, R., Feng, G., Nix, W.D. & Prinz, F.B. (2004 a). Quantitative impedance measurement using atomic force microscopy. J Appl Phys 96(6), 35403549.Google Scholar
O’Hayre, R., Lee, M. & Prinz, F.B. (2004 b). Ionic and electronic impedance imaging using atomic force microscopy. J Appl Phys 95(12), 83828392.Google Scholar
Pingree, L.S.C., Fabbroni Martin, E., Shull, K.R. & Hersam, M.C. (2005). Nanoscale impedance microscopy—A characterization tool for nanoelectronic devices and circuits. IEEE Trans Nanotechnol 4(2), 255259.Google Scholar
Ragoisha, G.A. & Bondarenko, A.S. (2004). Potentiodynamic electrochemical impedance spectroscopy of silver on platinum in underpotential and overpotential deposition. Surf Sci 568, 315320.Google Scholar
Shao, R., Kalinin, S.V. & Bonnell, D.A. (2003). Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl Phys Lett 82(12), 18691871.Google Scholar
Sun, Y., Mortensen, H., Schär, S., Lucier, A.-S., Miyahara, Y., Grütter, P. & Hofer, W. (2005). From tunneling to point contact: Correlation between forces and current. Phys Rev B 71(19), 14.Google Scholar
Szociński, M., Darowicki, K. & Schaefer, K. (2010). Identification and localization of organic coating degradation onset by impedance imaging. Polym Degrad Stab 95(6), 960964.Google Scholar
Trenkler, T., Hantschel, T., Stephenson, R., De Wolf, P., Vandervorst, W., Hellemans, L., Malave, A., Büchel, D., Oesterschulze, E., Kulisch, W., Niedermann, P., Sulzbach, T. & Ohlsson, O. (2000). Evaluating probes for “electrical” atomic force microscopy. J Vac Sci Technol B 18(1), 418427.Google Scholar