Skip to main content

In Situ Electron Energy-Loss Spectroscopy in Liquids

  • Megan E. Holtz (a1), Yingchao Yu (a2), Jie Gao (a2), Héctor D. Abruña (a2) and David A. Muller (a1) (a3)...

In situ scanning transmission electron microscopy (STEM) through liquids is a promising approach for exploring biological and materials processes. However, options for in situ chemical identification are limited: X-ray analysis is precluded because the liquid cell holder shadows the detector and electron energy-loss spectroscopy (EELS) is degraded by multiple scattering events in thick layers. Here, we explore the limits of EELS in the study of chemical reactions in their native environments in real time and on the nanometer scale. The determination of the local electron density, optical gap, and thickness of the liquid layer by valence EELS is demonstrated. By comparing theoretical and experimental plasmon energies, we find that liquids appear to follow the free-electron model that has been previously established for solids. Signals at energies below the optical gap and plasmon energy of the liquid provide a high signal-to-background ratio regime as demonstrated for LiFePO4 in an aqueous solution. The potential for the use of valence EELS to understand in situ STEM reactions is demonstrated for beam-induced deposition of metallic copper: as copper clusters grow, EELS develops low-loss peaks corresponding to metallic copper. From these techniques, in situ imaging and valence EELS offer insights into the local electronic structure of nanoparticles and chemical reactions.

Corresponding author
* Corresponding author. E-mail:
Hide All
Ashcroft N.W. & Mermin N.D. (1976). Solid State Physics. Belmont, CA: Brooks Cole.
Botton G.A., Lesperance G., Gallerneault C.E. & Ball M.D. (1995). Volume fraction measurement of dispersoids in a thin foil by parallel energy-loss spectroscopy: Development and assessment of the technique. J Microsc Oxf 180, 217229.
Brunetti G., Robert D., Bayle-Guillemaud P., Rouviere J.L., Rauch E.F., Martin J.F., Colin J.F., Bertin F. & Cayron C. (2011). Confirmation of the domino-cascade model by LiFePO4/FePO4 precession electron diffraction. Chem Mater 23(20), 45154524.
de Jonge N., Peckys D.B., Kremers G.J. & Piston D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106(7), 21592164.
de Jonge N. & Ross F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11), 695704.
Demers H., Ramachandra R., Drouin D. & de Jonge N. (2012). The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc Microanal 18(3), 582590.
Egerton R.F. (1986). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.
Egerton R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.
Evans J.E., Jungjohann K.L., Browning N.D. & Arslan I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Letters 11(7), 28092813.
Haynes W.M. (2012). CRC Handbook of Chemistry and Physics. Boca Raton, FL: Taylor & Francis, Inc.
Heller J.M., Hamm R.N., Birkhoff R.D. & Painter L.R. (1974). Collective oscillation in liquid water. J Chem Phys 60(9), 34833486.
Iakoubovskii K., Mitsuishi K., Nakayama Y. & Furuya K. (2008). Thickness measurements with electron energy loss spectroscopy. Microsc Res Tech 71(8), 626631.
Jackson J.D. (1999). Classical Electrodynamics. Hoboken, NJ: Wiley.
Jancso G. (2005). Effect of D and O-18 isotope substitution on the absorption spectra of aqueous copper sulfate solutions. Radiat Phys Chem 74(3-4), 168171.
Johnson D.W. & Spence J.C.H. (1974). Determination of single-scattering probability distribution from plural-scattering data. J Phys D Appl Phys 7(6), 771780.
Jungjohann K.L., Evans J.E., Aguiar J.A., Arslan I. & Browning N.D. (2012). Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc Microanal 18(3), 621627.
Kinyanjui M.K., Axmann P., Wohlfahrt-Mehrens M., Moreau P., Boucher F. & Kaiser U. (2010). Origin of valence and core excitations in LiFePO4 and FePO4 . J Phys Condes Matter 22(27), 275501.
Klein K.L., Anderson I.M. & de Jonge N. (2011a). Transmission electron microscopy with a liquid flow cell. J Microsc 242(2), 117123.
Klein K.L., de Jonge N. & Anderson I.M. (2011b). Energy-loss characteristics for EFTEM imaging with a liquid flow cell. Microsc Microanal 17(Suppl 2), 780781.
Malis T., Cheng S.C. & Egerton R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8(2), 193200.
Moreau P., Mauchamp V., Pailloux F. & Boucher F. (2009). Fast determination of phases in LixFePO4 using low losses in electron energy-loss spectroscopy. Appl Phys Lett 94(12), 123111-1–3.
Muller D.A. & Silcox J. (1995). Delocalization in inelastic-scattering. Ultramicroscopy 59(1-4), 195213.
Park J., Zheng H.M., Lee W.C., Geissler P.L., Rabani E. & Alivisatos A.P. (2012). Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6(3), 20782085.
Pines D. & Nozières P. (1989). The Theory of Quantum Liquids. Reading, MA: Addison-Wesley Publishing Company, Advanced Book Program.
Radisic A., Ross F.M. & Searson P.C. (2006). In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15), 78627868.
Reimer L. & Kohl H. (2008). Transmission Electron Microscopy Physics of Image Formation. New York: Springer.
Sigle W., Amin R., Weichert K., van Aken P.A. & Maier J. (2009). Delithiation study of LiFePO4 crystals using electron energy-loss spectroscopy. Electrochem Solid State Lett 12(8), A151A154.
Spence J.C.H. (1979). Uniqueness and the inversion problem of incoherent multiple-scattering. Ultramicroscopy 4(1), 912.
Tao F. & Salmeron M. (2011). In situ studies of chemistry and structure of materials in reactive environments. Science 331(6014), 171174.
Tavernelli I. (2006). Electronic density response of liquid water using time-dependent density functional theory. Phys Rev B 73(9), 094204.
Williamson M.J., Tromp R.M., Vereecken P.M., Hull R. & Ross F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532536.
Yuk J.M., Park J., Ercius P., Kim K., Hellebusch D.J., Crommie M.F., Lee J.Y., Zettl A. & Alivisatos A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077), 6164.
Zhang H.R., Egerton R.F. & Malac M. (2012). Local thickness measurement through scattering contrast and electron energy-loss spectroscopy. Micron 43(1), 815.
Zheng H., Smith R.K., Jun Y.-W., Kisielowski C., Dahmen U. & Alivisatos A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932), 13091312.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Holtz Supplementary Material
Supplementary Material

 PDF (678 KB)
678 KB


Full text views

Total number of HTML views: 17
Total number of PDF views: 225 *
Loading metrics...

Abstract views

Total abstract views: 612 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.