Skip to main content Accessibility help
×
Home

In Situ TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO2

  • Ranga J. Kamaladasa (a1), Abhishek A. Sharma (a2), Yu-Ting Lai (a1), Wenhao Chen (a1), Paul A. Salvador (a1), James A. Bain (a2), Marek Skowronski (a1) and Yoosuf N. Picard (a1)...

Abstract

In this study, in situ electrical biasing was combined with transmission electron microscopy (TEM) in order to study the formation and evolution of Wadsley defects and Magnéli phases during electrical biasing and resistive switching in titanium dioxide (TiO2). Resistive switching devices were fabricated from single-crystal rutile TiO2 substrates through focused ion beam milling and lift-out techniques. Defect evolution and phase transformations in rutile TiO2 were monitored by diffraction contrast imaging inside the TEM during electrical biasing. Reversible bipolar resistive switching behavior was observed in these single-crystal TiO2 devices. Biased induced reduction reactions created increased oxygen vacancy concentrations to such an extent that shear faults (Wadsley defects) and oxygen-deficient phases (Magnéli phases) formed over large volumes within the TiO2 TEM specimen. Nevertheless, the observed reversible formation/dissociation of Wadsley defects does not appear to correlate to resistive switching phenomena at these length scales. These defect zones were found to reversibly reconfigure in a manner consistent with charged oxygen vacancy migration responding to the applied bias polarity.

Copyright

Corresponding author

* Corresponding author. ypicard@cmu.edu

References

Hide All
Akihiro, S. (2008). Resistive switching in transition metal oxides. Mater Today 11, 2836.
Anderson, J.S. & Tilley, R.J.D. (1970). Crystallographic shear in oxygen-deficient rutile: An electron microscope study. J Solid State Chem 2(3), 472482.
Argall, F. (1968). Switching phenomena in titanium oxide thin films. Solid State Electron 11, 535541.
Baiatu, T., Waser, R. & Hardttl, K.-H. (1990). DC electrical degradation of perovskite-type titanates: III, a model of mechanism. J Am Ceram Soc 73(6), 16631673.
Bak, T., Nowotny, M.M.K., Sheppard, L.R. & Nowotny, J. (2008). Effect of prolonged oxidation on semiconducting properties of titanium dioxide. J Phys Chem 112, 1324813257. Available at http://pubs.acs.org/doi/abs/10.1021/jp803020d
Bartholomew, R. & Frankl, D. (1969). Electrical properties of some titanium oxides. Phys Rev 187(3), 828833. Available at http://journals.aps.org/pr/abstract/10.1103/PhysRev.187.828
Bursill, L.A. & Hyde, B.G. (1970). On the aggregation of wadsley defects in slightly reduced rutile. Philos Mag 23, 314.
Bursill, L.A. & Hyde, B.G.B. (1971). On the aggregation of Wadsley defects in slightly reduced rutile. Philos Mag 23, 314. Available at http://www.tandfonline.com/doi/abs/10.1080/14786437108216361
Bursill, L.A. & Hyde, B.G. (1972). Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms, and thermodynamics. Prog Solid State Chem 7, 177253.
Bursill, L.A. & Hyde, B.G.B. (1972). Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics. Prog Solid State Chem 7, 177253. Available at http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Crystallographic+Shear+in+the+Higher+Titanium+Oxides:+Structure,+Texture,+Mechanisms,+and+Thermodynamics#0
Bursill, L.A., Watanabe, D., Hyde, B.G. & Terasaki, O. (1969). On a new family of titanium oxides and the nature of slightly-reduced rutile. Philos Mag 20, 347359.
Chopra, K.L.K. (1965). Avalanche-induced negative resistance in thin oxide films. J Appl Phys 36(1), 184187.
Chyr, I., Lee, B., Chao, L.C. & Steckl, A.J. (1999). Damage generation and removal in the Ga[sup +] focused ion beam micromachining of GaN for photonic applications. J Vac Sci Technol B Microelectron Nanometer Struct 17, 30633067.
Dearnley, G., Stoneham, A.M. & Morgan, D.V. (1970). Electrical phenomena in amorphous oxide films. Rep Prog Phys 33, 11291191. Available at http://iopscience.iop.org/0034-4885/33/3/306
Gao, P., Wang, Z., Fu, W., Liao, Z., Liu, K., Wang, W. & Wang, E. (2010). In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron (Oxford, England : 1993) 41, 301305.
Ghenzi, N., Rubi, D., Mangano, E., Gimenez, G., Lell, J., Zelcer, A. & LEVY, P. (2014). Building memristive and radiation hardness TiO2-based junctions. Thin Solid Films 550, 683688.
Gruenwald, T.B. & Gordon, G. (1971). Oxygen diffusion in single crystals of titanium dioxide. J Inorg Nuclear Chem 33(1941), 11511155. Available at http://www.sciencedirect.com/science/article/pii/0022190271801847
Huang, H.-H.H., Shih, W.-C.W. & LAI, C.-H. (2010). Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device. Appl Phys Lett 96(19), 193505. doi:10.1063/1.3429024
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., XU, W., ZHANG, L.Q. & LI, J. (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science (New York, N.Y.) 330, 15151520.
Jeong, D.S., Schroeder, H., Breuer, U. & Waser, R. (2008). Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J Appl Phys 104, 123716123718.
Jiang, W., Kamaladasa, R.J., Lu, Y.M., Vicari, A., Berechman, R., Salvador, P.A. & Skowronski, M. (2011). Local heating-induced plastic deformation in resistive switching devices. J Appl Phys 110, 054514054518. doi:10.1063/1.3633271
Jiang, W., Noman, M., Lu, Y.M., Bain, J.A., Salvador, P.A. & Skowronski, M. (2012). Mobility of oxygen vacancy in SrTiO3 and its implications for oxygen-migration-based resistance switching. J Appl Phys 110(3), 034509. doi:10.1063/1.3622623
Kim, Y., Jang, J.H., Park, S.-J., Jesse, S., Donovan, L., Borisevich, A.Y. & Kalinin, S.V. (2013). Local probing of electrochemically induced negative differential resistance in TiO2 memristive materials. Nanotechnology 24, 085702085708. doi:10.1088/0957-4484/24/8/085702
Ko, C., Karthikeyan, A. & Ramanathan, S. (2011). Studies on oxygen chemical surface exchange and electrical conduction in thin film nanostructured titania at high temperatures and varying oxygen pressure. J Chem Phys 134(1), 014704014709. doi:10.1063/1.3524341
Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H. & Hwang, C.S. (2010). Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 5, 148153.
Lamperti, A., Spiga, S., Lu, H.L., Wiemer, C., Perego, M., Cianci, E. & Fanciulli, M. (2008). Study of the interfaces in resistive switching NiO thin films deposited by both ALD and e-beam coupled with different electrodes (Si, Ni, Pt, W, TiN). Microelectron Eng 85(12), 24252429.
Landuyt, J.V.V. (1974). Shear structures and crystallographic shear propagation. J Phys Colloq C7(35), 5363. Available at http://jphyscol.journaldephysique.org/articles/jphyscol/abs/1974/07/jphyscol197435C704/jphyscol197435C704.html
Lee, S., Kim, H., Park, J. & Yong, K. (2010). Coexistence of unipolar and bipolar resistive switching characteristics in ZnO thin films. J Appl Phys 108(7), 076101076103. doi:10.1063/1.3489882
Lin, C.-Y., Wu, C.-Y., Wu, C.-Y., Hu, C. & Tseng, T.-Y. (2007). Bistable resistive switching in Al2O3 memory thin films. J Electrochem Soc 154(9), G189G192.
Lu, Y.M., Noman, M., Chen, W., Salvador, P.A., Bain, J.A. & Skowronski, M. (2012). Elimination of high transient currents and electrode damage during electroformation of TiO2-based resistive switching devices. J Phys D Appl Phys 45, 395101395106. doi:10.1088/0022-3727/45/39/395101
Lu, Y.M., Noman, M., Picard, Y.N., Bain, J.A., Salvador, P.A. & Skowornski, M. (2013). Impact of Joule heating on the microstructure of nanoscale TiO2 resistive switching devices. J Appl Phys 113, 163703163709.
Menke, T., Dittmann, R., Meuffels, P., Szot, K. & Waser, R. (2009). Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J Appl Phys 106, 114507114508. doi:10.1063/1.3267485
Menzel, S., Waters, M., Marchewka, A., Böttger, U., Dittmann, R. & Waser, R. (2011). Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv Funct Mater 21(23), 44874492.
Oka, K., Yanagida, T., Nagashima, K., Kawai, T., Kim, J.-S. & Park, B.H. (2010). Resistive-switching memory effects of NiO nanowire/metal junctions. J Am Chem Soc 132(19), 66346635.
Pickett, M.D., Borghetti, J., Yang, J.J., Medeiros-Ribeiro, G. & Williams, R.S. (2011). Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv Mater (Deerfield Beach, Fla.) 23, 17301733.
Reece, M. & Morrell, R. (1991). Electron microscope study of non-stoichiometric titania. J Mater Sci 26(20), 55665574.
Sawa, A. (2008). Resistive switching in transition metal oxides. Mater Today 11, 2836.
Strachan, J.P., Pickett, M.D., Yang, J.J., Aloni, S., David Kilcoyne, A.L., Medeiros-Ribeiro, G. & Stanley Williams, R. (2010). Direct identification of the conducting channels in a functioning memristive device. Adv Mater (Deerfield Beach, Fla.) 22, 35733577.
Strachan, J.P., Strukov, D.B., Borghetti, J., Yang, J.J., Medeiros-Ribeiro, G. & Williams, R.S. (2011). The switching location of a bipolar memristor: Chemical, thermal and structural mapping. Nanotechnology 22, 254015254016. doi:10.1088/0957-4484/22/25/254015
Szot, K., Dittmann, R., Speier, W. & Waser, R. (2007). Nanoscale resistive switching in SrTiO3 thin films. Phys Status Solidi - Rapid Res Lett 1, R86R88.
Szot, K., Rogala, M., Speier, W., Klusek, Z., Besmehn, A. & Waser, R. (2011). TiO2 – a prototypical memristive material. Nanotechnology 22, 254001254021. doi:10.1088/0957-4484/22/25/254001
Szot, K., Speier, W., Bihlmayer, G. & Waser, R. (2006). Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5, 312320.
Taylor, G. & Lalevic, B. (1976). RF relaxation oscillations in polycrystalline TiO2 thin films. Solid State Electron 19, 669674. Available at http://www.sciencedirect.com/science/article/pii/003811017690143X
Taylor, G. & Lalevic, B. (1977). Threshold switching in polycrystalline TiO2 thin films. J Appl Phys 48(10), 44104412.
Waser, R. (1989). Electrochemical boundary conditions for resistance degradation of doped alkaline-earth titanates. J Am Ceram Soc 72(12), 22342240.
Waser, R. & Aono, M. (2007). Nanoionics-based resistive switching memories. Nat Mater 6, 833840.
Waser, R., Dittmann, R., Staikov, G. & Szot, K. (2009). Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv Mater 21(25–26), 26322663.
Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R. & Williams, R.S. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3, 429433.
Yang, J.J., Strachan, J.P.J., Xia, Q., Ohlberg, D.A.A., Kuekes, P.J., Kelley, R.D. & Williams, R.S. (2010). Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv Mater 22(36), 40344038.
Yang, J.J., Strukov, D.B. & Stewart, D.R. (2013). Memristive devices for computing. Nat Nanotechnol 8, 1324.
Yang, R., Terabe, K., Tsuruoka, T., Hasegawa, T. & Aono, M. (2012). Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO3-based nanoionics devices. Appl Phys Lett 100(23), 231603231604. doi:10.1063/1.4726084
Yoon, K.J., Song, S.J., Seok, J.Y., Yoon, J.H., Kim, G.H., Lee, J.H. & Hwang, C.S. (2013). Ionic bipolar resistive switching modes determined by the preceding unipolar resistive switching reset behavior in Pt/TiO2/Pt. Nanotechnology 24, 145201145208. doi:10.1088/0957-4484/24/14/145201

Keywords

In Situ TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO2

  • Ranga J. Kamaladasa (a1), Abhishek A. Sharma (a2), Yu-Ting Lai (a1), Wenhao Chen (a1), Paul A. Salvador (a1), James A. Bain (a2), Marek Skowronski (a1) and Yoosuf N. Picard (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed