Skip to main content Accesibility Help

Localization of αA-Crystallin in Rat Retinal Müller Glial Cells and Photoreceptors

  • Astrid Zayas-Santiago (a1), David S. Ríos (a2), Lidia V. Zueva (a3) and Mikhail Y. Inyushin (a4)

Transparent cells in the vertebrate optical tract, such as lens fiber cells and corneal epithelium cells, have specialized proteins that somehow permit only a low level of light scattering in their cytoplasm. It has been shown that both cell types contain (1) beaded intermediate filaments as well as (2) α-crystallin globulins. It is known that genetic and chemical alterations to these specialized proteins induce cytoplasmic opaqueness and visual complications. Crystallins were described previously in the retinal Müller cells of frogs. In the present work, using immunocytochemistry, fluorescence confocal imaging, and immuno-electron microscopy, we found that αA-crystallins are present in the cytoplasm of retinal Müller cells and in the photoreceptors of rats. Given that Müller glial cells were recently described as “living light guides” as were photoreceptors previously, we suggest that αA-crystallins, as in other highly transparent cells, allow Müller cells and photoreceptors to minimize intraretinal scattering during retinal light transmission.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Localization of αA-Crystallin in Rat Retinal Müller Glial Cells and Photoreceptors
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Localization of αA-Crystallin in Rat Retinal Müller Glial Cells and Photoreceptors
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Localization of αA-Crystallin in Rat Retinal Müller Glial Cells and Photoreceptors
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution NonCommercial-ShareAlike licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
Author for correspondence: Astrid Zayas-Santiago, E-mail:
Hide All
Agte, S, Junek, S, Matthias, S, Ulbricht, E, Erdmann, I, Wurm, A, Schild, D, Käs, JA Reichenbach, A (2011) Müller glial cell-provided cellular light guidance through the vital guinea-pig retina. Biophys J 101(11), 26112619.
Andley, UP (2009) Effects of alpha-crystallin on lens cell function and cataract pathology. Curr Mol Med 9(7), 887892.
Andley, UP, Tycksen, E, McGlasson-Naumann, BN Hamilton, PD (2018) Probing the changes in gene expression due to α-crystallin mutations in mouse models of hereditary human cataract. PLoS One 13(1), e0190817.
Atchison, DA Smith, G (1995) Continuous gradient index and shell models of the human lens. Vision Res 35(18), 25292538.
Augusteyn, RC (2004) Alpha-crystallin: A review of its structure and function. Clin Exp Optom 87(6), 356366.
Bajramović, JJ, Lassmann, H van Noort, JM (1997) Expression of alphaB-crystallin in glia cells during lesional development in multiple sclerosis. J Neuroimmunol 78(1–2), 143151.
Benedek, GB (1971) Theory of transparency of the eye. Appl Opt 10(3), 459473.
Caprioli, J, Munemasa, Y, Kwong, JM Piri, N (2009) Overexpression of thioredoxins 1 and 2 increases retinal ganglion cell survival after pharmacologically induced oxidative stress, optic nerve transection, and in experimental glaucoma. Trans Am Ophthalmol Soc 107, 161165.
Cavusoglu, N, Thierse, D, Mohand-Saïd, S, Chalmel, F, Poch, O, Van-Dorsselaer, A, Sahel, J-A Léveillard, T (2003) Differential proteomic analysis of the mouse retina: The induction of crystallin proteins by retinal degeneration in the rd1 mouse. Mol Cell Proteomics 2(8), 494505.
Chepelinsky, AB, King, CR, Zelenka, PS Piatigorsky, J (1985) Lens-specific expression of the chloramphenicol acetyltransferase gene promoted by 5′ flanking sequences of the murine alpha A-crystallin gene in explanted chicken lens epithelia. Proc Natl Acad Sci U S A 82(8), 23342338.
Clark, JI, Matsushima, H, David, LL Clark, JM (1999) Lens cytoskeleton and transparency: A model. Eye (Lond) 13(Pt 3b), 417424.
Datiles, MB, Ansari, RR, Suh, KI, Vitale, S, Reed, GF, Zigler, JS Ferris, FL (2008) Clinical detection of precataractous lens protein changes using dynamic light scattering. Arch Ophthalmol 126(12), 16871693.
De, S, Rabin, DM, Salero, E, Lederman, PL, Temple, S Stern, JH (2007) Human retinal pigment epithelium cell changes and expression of alphaB-crystallin: A biomarker for retinal pigment epithelium cell change in age-related macular degeneration. Arch Ophthalmol 125(5), 641645.
Delaye, M Tardieu, A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302(5907), 415417.
Deretic, D, Aebersold, RH, Morrison, HD Papermaster, DS (1994) Alpha A- and alpha B-crystallin in the retina. Association with the post-golgi compartment of frog retinal photoreceptors. J Biol Chem 269(24), 1685316861.
Dulle, JE Fort, PE (2016) Crystallins and neuroinflammation: The glial side of the story. Biochim Biophys Acta 1860(1 Pt B), 278286.
Eberhardt, C, Amann, B, Feuchtinger, A, Hauck, SM Deeg, CA (2011) Differential expression of inwardly rectifying K+ channels and aquaporins 4 and 5 in autoimmune uveitis indicates misbalance in Müller glial cell-dependent ion and water homeostasis. Glia 59(5), 697707.
Enoch, JM (1963) Optical properties of the retinal receptors. J Opt Soc Am 53(1), 7185.
FitzGerald, P, Sun, N, Shibata, B Hess, JF (2016) Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium. Mol Vis 22, 970989.
Fort, PE, Freeman, WM, Losiewicz, MK, Singh, RS Gardner, TW (2009) The retinal proteome in experimental diabetic retinopathy: Up-regulation of crystallins and reversal by systemic and periocular insulin. Mol Cell Proteomics 8(4), 767779.
Fort, PE Lampi, KJ (2011) New focus on alpha-crystallins in retinal neurodegenerative diseases. Exp Eye Res 92(2), 98103.
Franze, K, Grosche, J, Skatchkov, SN, Schinkinger, S, Foja, C, Schild, D, Uckermann, O, Travis, K, Reichenbach, A Guck, J (2007) Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A 104(20), 82878292.
Funke, S, Perumal, N, Beck, S, Gabel-Scheurich, S, Schmelter, C, Teister, J, Gerbig, C, Gramlich, OW, Pfeiffer, N Grus, FH (2016) Glaucoma related proteomic alterations in human retina samples. Sci Rep 6, 29759.
Graw, J (2009) Genetics of crystallins: Cataract and beyond. Exp Eye Res 88(2), 173189.
Hauck, SM, Schoeffmann, S, Deeg, CA, Gloeckner, CJ, Swiatek-de Lange, M Ueffing, M (2005) Proteomic analysis of the porcine interphotoreceptor matrix. Proteomics 5(14), 36233636.
Horwitz, J (2009) Alpha crystallin: The quest for a homogeneous quaternary structure. Exp Eye Res 88(2), 190194.
Horwitz, J, Bova, MP, Ding, LL, Haley, DA Stewart, PL (1999) Lens alpha-crystallin: Function and structure. Eye (Lond) 13(Pt 3b), 403408.
Jeon, CJ, Strettoi, E Masland, RH (1998) The major cell populations of the mouse retina. J Neurosci 18(21), 89368946.
Jester, JV (2008) Corneal crystallins and the development of cellular transparency. Semin Cell Dev Biol 19(2), 8293.
Johnsen, S (2001) Hidden in plain sight: The ecology and physiology of organismal transparency. Biol Bull 201(3), 301318.
Koyama, Y Goldman, JE (1999) Formation of GFAP cytoplasmic inclusions in astrocytes and their disaggregation by alphaB-crystallin. Am J Pathol 154(5), 15631572.
Krishnan, K, Kathiresan, T, Raman, R, Rajini, B, Dhople, VM, Aggrawal, RK Sharma, Y (2007) Ubiquitous lens alpha-, beta-, and gamma-crystallins accumulate in anuran cornea as corneal crystallins. J Biol Chem 282(26), 1895318959.
Lin JH and Lavail MM (2010) Misfolded proteins and retinal dystrophies. Adv Exp Med Biol 664, 115–121.
Losiewicz, MK Fort, PE (2011) Diabetes impairs the neuroprotective properties of retinal alpha-crystallins. Invest Ophthalmol Vis Sci 52(9), 50345042.
Maeda, A, Ohguro, H, Maeda, T, Nakagawa, T Kuroki, Y (1999) Low expression of alphaA-crystallins and rhodopsin kinase of photoreceptors in retinal dystrophy rat. Invest Ophthalmol Vis Sci 40(12), 27882794.
Makarov, V, Zueva, L, Golubeva, T, Korneeva, E, Khmelinskii, I Inyushin, M (2017) Quantum mechanism of light transmission by the intermediate filaments in some specialized optically transparent cells. Neurophotonics 4(1), 011005.
Mao, YW, Liu, JP, Xiang, H Li, DW (2004) Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11(5), 512526.
Mueller, NH, Fogueri, U, Pedler, MG, Montana, K, Petrash, JM Ammar, DA (2015) Impact of subunit composition on the uptake of α-crystallin by lens and retina. PLoS One 10(9), e0137659.
Nakata, K, Crabb, JW Hollyfield, JG (2005) Crystallin distribution in Bruch’s membrane-choroid complex from AMD and age-matched donor eyes. Exp Eye Res 80(6), 821826.
Oka, M, Kudo, H, Sugama, N, Asami, Y Takehana, M (2008) The function of filensin and phakinin in lens transparency. Mol Vis 14, 815822.
Okazaki, K, Yasuda, K, Kondoh, H Okada, TS (1985) DNA sequences responsible for tissue-specific expression of a chicken alpha-crystallin gene in mouse lens cells. EMBO J 4(10), 25892595.
Overbeek, PA, Chepelinsky, AB, Khillan, JS, Piatigorsky, J Westphal, H (1985) Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc Natl Acad Sci U S A 82(23), 78157819.
Peschek, J, Braun, N, Franzmann, TM, Georgalis, Y, Haslbeck, M, Weinkauf, S Buchner, J (2009) The eye lens chaperone alpha-crystallin forms defined globular assemblies. Proc Natl Acad Sci U S A 106(32), 1327213277.
Quinlan, RA, Carte, JM, Sandilands, A Prescott, AR (1996) The beaded filament of the eye lens: An unexpected key to intermediate filament structure and function. Trends Cell Biol 6(4), 123126.
Rao, NA, Saraswathy, S, Wu, GS, Katselis, GS, Wawrousek, EF Bhat, S (2008) Elevated retina-specific expression of the small heat shock protein, alphaA-crystallin, is associated with photoreceptor protection in experimental uveitis. Invest Ophthalmol Vis Sci 49(3), 11611171.
Reichenbach, A Bringmann, A (2013) New functions of Müller cells. Glia 61(5), 651678.
Reichenbach, A Robinson, S (1995) Phylogenetic constraints on retinal organisation and development. Prog Ret Eye Res 15(1), 139171.
Renkawek, K, Stege, GJ Bosman, GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 10(11), 22732276.
Renkawek, K, Voorter, CE, Bosman, J, van Workum, FP de Jong, WW (1994) Expression of alpha B-crystallin in Alzheimer’s disease. Acta Neuropathol 87(2), 155160.
Sakaguchi H, Miyagi M, Darrow RM, Crabb JS, Hollyfield JG, Organisciak DT and Crabb JW (2003) Intense light exposure changes the crystallin content in retina. Exp Eye Res 76(1), 131–133.
Schikorski, T (2010) Pre-embedding immunogold localization of antigens in mammalian brain slices. Methods Mol Biol 657, 133144.
Simirskiĭ, VN, Panova, IG, Sologub, AA Aleĭnikova, KS (2003) Localization of crystallins in Muellerian cells in the grass frog retina. Ontogenez 34(5), 365370.
Song, S, Landsbury, A, Dahm, R, Liu, Y, Zhang, Q Quinlan, RA (2009) Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest 119(7), 18371848.
van den IJssel, PR, Overkamp, P, Knauf, U, Gaestel, M de Jong, WW (1994) Alpha A-crystallin confers cellular thermoresistance. FEBS Lett 355(1), 5456.
van Noort, JM, van Sechel, AC, Bajramovic, JJ, el Ouagmiri, M, Polman, CH, Lassmann, H Ravid, R (1995) The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature 375(6534), 798801.
Vázquez-Chona, F, Song, BK Geisert, EE (2004) Temporal changes in gene expression after injury in the rat retina. Invest Ophthalmol Vis Sci 45(8), 27372746.
Westheimer, G (2008) Directional sensitivity of the retina: 75 years of Stiles–Crawford effect. Proc Biol Sci 275(1653), 27772786.
Willbold, E, Reinicke, M, Lance-Jones, C, Lagenaur, C, Lemmon, V Layer, PG (1995) Müller glia stabilizes cell columns during retinal development: Lateral cell migration but not neuropil growth is inhibited in mixed chick-quail retinospheroids. Eur J Neurosci 7(11), 22772284.
Wistow, G (2012) The human crystallin gene families. Hum Genomics 6, 26.
Wistow, GJ Piatigorsky, J (1988) Lens crystallins: The evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57, 479504.
Xia, JZ, Wang, Q, Tatarkova, S, Aerts, T Clauwaert, J (1996) Structural basis of eye lens transparency: Light scattering by concentrated solutions of bovine alpha-crystallin proteins. Biophys J 71(5), 28152822.
Zampighi, GA, Zampighi, L Lanzavecchia, S (2011) The three-dimensional distribution of αA-crystalline in rat lenses and its possible relation to transparency. PLoS One 6(8), e23753.
Zayas-Santiago, A, Agte, S, Rivera, Y, Benedikt, J, Ulbricht, E, Karl, A, Dávila, J, Savvinov, A, Kucheryavykh, Y, Inyushin, M, Cubano, LA, Pannicke, T, Veh, RW, Francke, M, Verkhratsky, A, Eaton, MJ, Reichenbach, A Skatchkov, SN (2014) Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina. PLoS One 9(5), e97155.
Zueva, L, Golubeva, T, Korneeva, E, Makarov, V, Khmelinskii, I Inyushin, M (2016) Foveolar Müller cells of the pied flycatcher: Morphology and distribution of intermediate filaments regarding cell transparency. Microsc Microanal 22(2), 379386.
Zwaan, J (1983) The appearance of alpha-crystallin in relation to cell cycle phase in the embryonic mouse lens. Dev Biol 96(1), 173181.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed