Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T07:11:37.730Z Has data issue: false hasContentIssue false

Mapping Local Surface Plasmon Modes in a Nanoplasmonic Trimer Using Cathodoluminescence in the Scanning Electron Microscope

Published online by Cambridge University Press:  05 May 2020

Amelia C. Y. Liu*
Affiliation:
School of Physics and Astronomy, Monash University, Clayton, VIC3800, Australia Monash Centre for Electron Microscopy, Monash University, Clayton, VIC3800, Australia
Julian Lloyd
Affiliation:
Department of Chemical Engineering, Monash University, Clayton, VIC3800, Australia
Toon Coenen
Affiliation:
DELMIC BV, Kanaalweg 4, 2628 EB, Delft, The Netherlands
Daniel E. Gómez
Affiliation:
School of Applied Science, RMIT University, Melbourne, VIC3000, Australia
*
*Author for correspondence: Amelia C. Y. Liu, E-mail: amelia.liu@monash.edu
Get access

Abstract

The excitability of local surface plasmon modes in radial trimers composed of gold nanorods was mapped using hyperspectral cathodoluminescence (CL) in the scanning electron microscope. In symmetric trimers, the local plasmon resonances could be excited most effectively at the ends of individual rods. Introducing asymmetry into the structure breaks the degeneracy of the dipole modes and changes the excitability of transverse dipole modes in different directions. CL in the scanning electron microscope has great potential to interrogate individual nanophotonic structures and is a complement to electron energy loss spectroscopy and optical microscopy.

Type
Australian Microbeam Analysis Society Special Section AMAS XV 2019
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chu, M-W, Myroshnychenko, V, Chen, CH, Deng, J-P, Mou, C-Y & de Abajo, FJG (2009). Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett 9, 399404.CrossRefGoogle Scholar
Coenen, T, Brenny, BJM, Vesseur, EJ & Polman, A (2015 a). Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution. MRS Bull 40, 359365.CrossRefGoogle Scholar
Coenen, T, Schoen, DT, Brenny, BJM, Polman, A & Brongersma, ML (2016). Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures. Phys Rev B 93, 195429.CrossRefGoogle Scholar
Coenen, T, Schoen, DT, Mann, SA, Rodrigue, SRK, Brenny, BJM, Polman, A & Brongersma, ML (2015 b). Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system. Nano Lett 15, 76667670.CrossRefGoogle ScholarPubMed
Davis, TJ & Gómez, DE (2017). Colloquium: An algebraic model of localized surface plasmons and their interactions. Rev Mod Phys 89, 011003.CrossRefGoogle Scholar
Gómez, DE, Teo, ZQ, Altissimo, M, Davis, TJ, Earl, S & Roberts, A (2013). The dark side of plasmonics. Nano Lett 13, 37223728.CrossRefGoogle ScholarPubMed
Gómez, DE, Vernon, KC & Davis, TJ (2010). Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures. Phys Rev B 81, 075414.CrossRefGoogle Scholar
Halas, NJ, Lal, S, Chang, W-S, Link, S & Nordlander, P (2011). Plasmons in strongly coupled metallic nanostructures. Chem Rev 111, 39133961.CrossRefGoogle ScholarPubMed
Hohenester, U (2014). Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput Phys Commun 185, 11771187.CrossRefGoogle Scholar
Hohenester, U & Trugler, A (2012). MNPBEM: A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun 183, 370381.CrossRefGoogle Scholar
Kawasaki, N, Meuret, S, Weil, R, Lourenco-Martins, H, Stéphan, O & Kociak, M (2016). Extinction and scattering properties of high-order surface plasmon modes in silver nanoparticles probed by combined spatially resolved electron energy loss spectroscopy and cathodoluminescence. ACS Photonics 3, 16541661.CrossRefGoogle Scholar
Kociak, M & Stéphan, O (2014). Mapping plasmons at the nanometer scale in an electron microscope. Chem Soc Rev 43, 38653883.CrossRefGoogle Scholar
Schefold, J, Meuret, S, Schilder, N, Coenen, T, Agrawal, H, Garnett, EC & Polman, A (2019). Spatial resolution of coherent cathodoluminescence superresolution microscopy. ACS Photonics 6, 10671072.CrossRefGoogle Scholar
Singh, K, Panchenko, E, Nasr, B, Liu, A, Wesemann, L, Davis, T & Roberts, A (2018). Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film. Beilstein J Nanotechnol 9, 14911500.CrossRefGoogle Scholar
Solis, D, Willingham, B, Nauert, SL, Slaughter, LS, Olson, J, Swanglap, P, Paul, A, Chang, W-S & Link, S (2012). Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett 12, 13491353.CrossRefGoogle ScholarPubMed
Vesseur, EJR, Aizpurua, J, Coenen, T, Reyes-Coronado, A, Batson, PE & Polman, A (2012). Plasmonic excitation and manipulation with an electron beam. MRS Bull 37, 752760.CrossRefGoogle Scholar
Waxenegger, J, Hohenester, U & Trugler, A (2015). Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures. Comput Phys Commun 193, 138150.CrossRefGoogle Scholar