Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-04-30T10:49:05.878Z Has data issue: false hasContentIssue false

New Electrostatic Phase Plate for Phase-Contrast Transmission Electron Microscopy and Its Application for Wave-Function Reconstruction

Published online by Cambridge University Press:  15 October 2010

Katrin Schultheiss*
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), D-76128 Karlsruhe, Germany
Joachim Zach
Affiliation:
CEOS GmbH, Englerstr. 28, D-69126 Heidelberg, Germany
Bjoern Gamm
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), D-76128 Karlsruhe, Germany
Manuel Dries
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), D-76128 Karlsruhe, Germany
Nicole Frindt
Affiliation:
Bioquant Cell Networks, Universität Heidelberg, D-69120 Heidelberg, Germany
Rasmus R. Schröder
Affiliation:
Bioquant Cell Networks, Universität Heidelberg, D-69120 Heidelberg, Germany
Dagmar Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), D-76128 Karlsruhe, Germany
*
Corresponding author. E-mail: katrin.schultheiss@kit.edu
Get access

Abstract

A promising novel type of electrostatic phase plate for transmission electron microscopy (TEM) is presented. The phase plate consists of a single microcoaxial cable-like rod with its electrode exposed to the undiffracted electrons. The emerging field is used to shift the phase of the undiffracted electrons with respect to diffracted electrons. The design overcomes the drawback of the spatial frequency-blocking ring electrode of the Boersch phase plate. First, experimental phase-contrast images are presented for PbSe and Pt nanoparticles with clearly varying phase contrast, which depends on the applied voltage and resulting phase shift of the unscattered electrons. With the new phase-plate design, we show for the first time the reconstruction of an object wave function based on a series of only three experimental phase-contrast TEM images obtained with an electrostatic phase plate.

Type
Instrumentation and Software Developments
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alloyeau, D., Hsieh, W.K., Anderson, E.H., Hilken, L., Benner, G., Meng, X., Chen, F.R. & Kisielowsky, C. (2010). Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope. Ultramicroscopy 110(5), 563570.CrossRefGoogle Scholar
Boersch, H. (1947). Über Kontraste von Atomen im Elektronenmikroskop. Z Naturforsch 2a, 615633.CrossRefGoogle Scholar
Cambie, R., Downing, K.H., Typke, D., Glaeser, R.M. & Jin, J. (2007). Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. Ultramicroscopy 107, 329339.CrossRefGoogle ScholarPubMed
Danev, R. & Nagayama, K. (2001a). Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88, 243252.CrossRefGoogle ScholarPubMed
Danev, R. & Nagayama, K. (2001b). Complex observation in electron microscopy. II. Direct visualization of phases and amplitudes of exit wave functions. J Phys Soc Jpn 70, 696702.CrossRefGoogle Scholar
Fukuda, Y., Fukazawa, Y., Danev, R., Shigemoto, R. & Nagayama, K. (2009). Tuning of the Zernike phase-plate for visualization of detailed ultrastructure in complex biological specimens. J Struct Biol 168, 476484.CrossRefGoogle ScholarPubMed
Gamm, B., Dries, M., Schultheiss, K., Blank, H., Rosenauer, A., Schröder, R.R. & Gerthsen, D. (2010). Object wave reconstruction by phase plate transmission electron microscopy. Ultramicroscopy 110(7), 807814.CrossRefGoogle ScholarPubMed
Koch, C.T. (2008). A flux-preserving non-linear inline holography reconstruction algorithm for partially coherent electrons. Ultramicroscopy 108, 141150.CrossRefGoogle ScholarPubMed
Lichte, H. (1986). Electron holography approaching atomic resolution. Ultramicroscopy 20, 293304.CrossRefGoogle Scholar
Majorovits, E., Barton, B., Schultheiss, K., Perez-Willard, F., Gerthsen, D. & Schröder, R.R. (2007). Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107, 213226.CrossRefGoogle ScholarPubMed
Potapov, P., Lichte, H., Verbeeck, J. & Van Dyck, D. (2006). Experiments on inelastic electron holography. Ultramicroscopy 106, 10121018.CrossRefGoogle ScholarPubMed
Sauter, S. & Schwab, C. (2004). Randelementmethoden. Wiesbaden, Germany: Teubner.CrossRefGoogle Scholar
Schultheiß, K., Pérez-Willard, F., Barton, B., Gerthsen, D. & Schroeder, R.R. (2006). Fabrication of a Boersch phase plate for phase contrast imaging in a transmission electron microscope. Rev Sci Instrum 77, 033701.CrossRefGoogle Scholar
Shiue, J., Chang, C.-S., Huang, S.-H., Hsu, C.-H., Tsai, J.-S., Chang, W.H., Wu, Y.-M., Lin, Y.-C., Kuo, P.-C., Huang, Y.-S., Hwu, Y., Kai, J.-J., Tseng, F.-G. & Chen, F.-R. (2009). Phase TEM for biological imaging utilizing a Boersch electrostatic phase plate: Theory and practice. J Electron Microsc 58, 137145.CrossRefGoogle ScholarPubMed
Thust, A., Coene, W.M.J., Op de Beeck, M. & Van Dyck, D. (1996). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.CrossRefGoogle Scholar
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Plenum.CrossRefGoogle Scholar
Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9, 686698.CrossRefGoogle Scholar