Skip to main content Accessibility help
×
Home

Off-Axis Electron Holography of Unbiased and Reverse-Biased Focused Ion Beam Milled Si p-n Junctions

  • Alison C. Twitchett (a1), Rafal E. Dunin-Borkowski (a1), Robert J. Hallifax (a1), Ronald F. Broom (a1) and Paul A. Midgley (a1)...

Abstract

Off-axis electron holography is used to measure electrostatic potential profiles across a silicon p-n junction, which has been prepared for examination in the transmission electron microscope (TEM) in two different specimen geometries using focused ion beam (FIB) milling. Results are obtained both from a conventional unbiased FIB-milled sample and using a novel sample geometry that allows a reverse bias to be applied to an FIB-milled sample in situ in the TEM. Computer simulations are fitted to the results to assess the effect of TEM specimen preparation on the charge density and the electrostatic potential in the thin sample.

Copyright

Corresponding author

Corresponding author. E-mail: rafal.db@msm.cam.ac.uk

References

Hide All

REFERENCES

Beleggia, M., Cristofori, D., Merli, P.G., & Pozzi, G. (2000). Electron microscopy of reverse biased p-n junctions. Micron 31, 231236.
Beleggia, M., Fazzini, P.F., Merli, P.G., & Pozzi, G. (2003). Influence of charged oxide layers on TEM imaging of reverse-biased p-n junctions. Phys Rev B 67, 045328.
Darlington, E.H. & Valdré, U. (1975). Imaging of weak Lorentz objects (p-n junctions) by high voltage Fresnel TEM and STEM. J Phys E 8, 321324.
de Ruijter, W.J. & Weiss, J.K. (1993). Detection limits in quantitative off-axis electron holography. Ultramicroscopy 50, 269283.
Donnet, D.M., De Veirman, A.E.M., Otterloo, B., & Roberts, H. (2003). Novel FIB-TEM preparation methods for semiconductor device characterisation and failure analysis. Inst Phys Conf Ser 180, 617620.
Dunin-Borkowski, R.E., McCartney, M.R., & Smith, D.J. (2004). Electron holography of nanostructured materials. In Encyclopaedia of Nanoscience and Nanotechnology, Nalwa, H.S. (Ed.), Vol. 3, pp. 41100. Stevenson Ranch, California: American Scientific Publishers.
Frabboni, S., Matteucci, G., Pozzi, G., & Vanzi, M. (1985). Electron holographic observations of the electrostatic-field associated with thin reverse-biased p-n junctions. Phys Rev Lett 55, 21962199.
Houben, L., Luysberg, M., & Brammer, T. (2003). Electron beam illumination effects on electrostatic potential mapping in holographic imaging of semiconductors in transmission electron microscopy. Inst Phys Conf Ser 180, 4952.
Langford, R.M. & Petford-Long, A.K. (2001). Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J Vac Sci Technol A 19, 21862193.
McCartney, M.R. & Gajdardziska-Josifovska, M. (1994). Absolute measurement of normalized thickness, t/λi, from off-axis electron holography. Ultramicroscopy 53, 283289.
McCartney, M.R., Gribelyuk, M.A., Li, J., Ronsheim, P., McMurray, J.S., & Smith, D.J. (2002). Quantitative analysis of one-dimensional dopant profile by electron holography. Appl Phys Lett 80, 32133215.
Merli, P.G., Missiroli, G.F., & Pozzi, G. (1974). P-n junction observations by interference electron microscopy. J de Microscopie 21, 1120.
Merli, P.G., Missiroli, G.F., & Pozzi, G. (1975). Electron microscopy observations of p-n junctions. Phys Stat Sol (a) 30, 699711.
Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. (1989). Numerical Recipes. Cambridge, UK: Cambridge University Press.
Rau, W.D., Schwander, P., Baumann, F.H., Hoppner, W., & Ourmazd, A. (1999). Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys Rev Lett 82, 26142617.
Saxton, W.O., Pitt, T.J., & Horner, M. (1979). Digital image processing: The Semper system. Ultramicroscopy 4, 343354.
Somodi, P.K., Dunin-Borkowski, R.E., Twitchett, A.C., Barnes, C.H.W., & Midgley, P.A. (2003). Simulations of the electrostatic potential distribution in a TEM sample of a semiconductor device. Inst Phys Conf Ser 180, 501504.
Sze, S.M. (2002). Semiconductor Devices. New York: Wiley.
Titchmarsh, J.M., Lapworth, A.J., & Booker, G.R. (1969). A new method for investigating the electric field regions of p-n junctions. Phys Stat Sol 34, K83K86.
Twitchett, A.C., Dunin-Borkowski, R.E., & Midgley, P.A. (2002). Quantitative electron holography of biased semiconductor devices. Phys Rev Lett 88, 238302.
Vanzi, M. (1984). Theoretical model for studying electrostatic potentials by means of Lorentz microscopy. Optik 68, 319333.
Wang, Z., Hirayama, T., Sasaki, K., Saka, H., & Kato, N. (2002a). Electron holographic characterization of electrostatic potential distributions in a transistor sample fabricated by focused ion beam. Appl Phys Lett 80, 246248.
Wang, Z., Kato, T., Shibata, N., Hirayama, T., Kato, N., Sasaki, K., & Saka, H. (2002b). Characterizing an implanted Si/Si p-n junction with lower doping level by combined electron holography and focused-ion-beam milling. Appl Phys Lett 81, 478480.
Williams, D.B. & Carter, C.B. (1997). Transmission Electron Microscopy. New York: Plenum Press.

Keywords

Related content

Powered by UNSILO

Off-Axis Electron Holography of Unbiased and Reverse-Biased Focused Ion Beam Milled Si p-n Junctions

  • Alison C. Twitchett (a1), Rafal E. Dunin-Borkowski (a1), Robert J. Hallifax (a1), Ronald F. Broom (a1) and Paul A. Midgley (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.