Skip to main content
×
Home
    • Aa
    • Aa

Optical Mapping of Electrical Activation in the Developing Heart

  • David Sedmera (a1), Maria Reckova (a1), Carlin Rosengarten (a1), Maria I. Torres (a1), Robert G. Gourdie (a1) and Robert P. Thompson (a1)...
Abstract

Specialized conduction tissues mediate coordinated propagation of electrical activity through the adult vertebrate heart. Following activation of the atria, the activation wave is slowed down in the atrioventricular canal or node, after which it spreads rapidly into the left and right ventricles via the His-Purkinje system (HPS). This results in the ventricles being activated from the apex toward the base, which is a hallmark of HPS function. The development of mature HPS function follows significant phases of cardiac morphogenesis. Initially, the cardiac impulse propagates in a slow, linear, and isotropic fashion from the sinus venosus at the most caudal portion of the tubular heart. Although the speed of impulse propagation gradually increases as it travels toward the anterior regions of the heart tube, the actual sequence of ventricular activation in the looped heart proceeds in the same direction as blood flow. Eventually, the immature base-to-apex sequence of ventricular activation undergoes an apparent reversal, changing to the mature apex-to-base pattern. Using an optical mapping approach, we demonstrate that the timing of this last transition shows striking dependence on hemodynamic loading of the ventricle, being accelerated by pressure overload and delayed in left ventricular hypoplasia. Comparison of chick and mammalian hearts revealed some striking similarities as well as key differences in the timing of such events during cardiac organogenesis.

Copyright
Corresponding author
Corresponding author. E-mail: sedmerad@musc.edu
References
Hide All

REFERENCES

Arbel, E.R., Liberthson, R., Langendorf, R., Pick, A., Lev, M., & Fishman, A.P. (1977). Electrophysiological and anatomical observations on the heart of the African lungfish. Am J Physiol 232, H2434.
Biermann, M., Rubart, M., Moreno, A., Wu, J., Josiah-Durant, A., & Zipes, D.P. (1998). Differential effects of cytochalasin D and 2,3 butanedione monoxime on isometric twitch force and transmembrane action potential in isolated ventricular muscle: Implications for optical measurements of cardiac repolarization. J Cardiovasc Electrophysiol 9, 13481357.
Cheng, G., Litchenberg, W.H., Cole, G.J., Mikawa, T., Thompson, R.P., & Gourdie, R.G. (1999). Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126, 50415049.
Chuck, E.T., Freeman, D.M., Watanabe, M., & Rosenbaum, D.S. (1997). Changing activation sequence in the embryonic chick heart. Implications for the development of the His-Purkinje system. Circ Res 81, 470476.
Chuck, E.T., Meyers, K., France, D., Creazzo, T.L., & Morley, G.E. (2004). Transitions in ventricular activation revealed by two-dimensional optical mapping. Anat Rec 280A, 9901000.
Chuck, E.T. & Watanabe, M. (1997). Differential expression of PSA-NCAM and HNK-1 epitopes in the developing cardiac conduction system of the chick. Dev Dyn 209, 182195.
Clark, E.B., Hu, N., Dummett, J.L., Vandekieft, G.K., Olson, C., & Tomanek, R. (1986). Ventricular function and morphology in chick embryo from stages 18 to 29. Am J Physiol 250, H407413.
Clark, E.B., Hu, N., Frommelt, P., Vandekieft, G.K., Dummett, J.L., & Tomanek, R.J. (1989). Effect of increased pressure on ventricular growth in stage 21 chick embryos. Am J Physiol 257, H5561.
Clark, E.B., Hu, N., & Rosenquist, G.C. (1984). Effect of conotruncal constriction on aortic-mitral valve continuity in the stage 18, 21 and 24 chick embryo. Am J Cardiol 53, 324327.
de la Cruz, M.V., Castillo, M.M., Villavicencio, L., Valencia, A., & Moreno-Rodriguez, R.A. (1997). Primitive interventricular septum, its primordium, and its contribution in the definitive interventricular septum: In vivo labelling study in the chick embryo heart. Anat Rec 247, 512520.
Dillon, S. & Morad, M. (1981). A new laser scanning system for measuring action potential propagation in the heart. Science 214, 453456.
Durrer, D., Buller, J., Graaff, P., Lo, G.I., & Meyler, F.L. (1961). Epicardial excitation pattern as observed in the isolated revived and perfused fetal human heart. Circ Res 9, 2938.
Germroth, P.G., Gourdie, R.G., & Thompson, R.P. (1995). Confocal microscopy of thick sections from acrylamide gel embedded embryos. Microsc Res Tech 30, 513520.
Gourdie, R.G., Harris, B.S., Bond, J., Justus, C., Hewett, K.W., O'Brien, T.X., Thompson, R.P., & Sedmera, D. (2003). Development of the cardiac pacemaking and conduction system. Birth Defects Res 69C, 4657.
Gourdie, R.G., Wei, Y., Kim, D., Klatt, S.C., & Mikawa, T. (1998). Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA 95, 68156818.
Hall, C.E., Hurtado, R., Hewett, K.W., Shulimovich, M., Poma, C.P., Reckova, M., Justus, C., Pennisi, D.J., Tobita, K., Sedmera, D., Gourdie, R.G., & Mikawa, T. (2004). Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development 131, 581592.
Hamburger, V. & Hamilton, H.L. (1951). A series of normal stages in the development of the chick embryo. J Morphol 88, 4992.
Jalife, J., Morley, G.E., Tallini, N.Y., & Vaidya, D. (1998). A fungal metabolite that eliminates motion artifacts. J Cardiovasc Electrophysiol 9, 13581362.
James, J.F., Hewett, T.E., & Robbins, J. (1998). Cardiac physiology in transgenic mice. Circ Res 82, 407415.
Kamino, K. (1991). Optical approaches to ontogeny of electrical activity and related functional organization during early heart development. Physiol Rev 71, 5391.
Kamino, K., Hirota, A., & Fujii, S. (1981). Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 290, 595597.
Kurosawa, H. & Becker, A.E. (1985). Dead-end tract of the conduction axis. Int J Cardiol 7, 1320.
Morley, G.E. & Vaidya, D. (2001). Understanding conduction of electrical impulses in the mouse heart using high-resolution video imaging technology. Microsc Res Tech 52, 241250.
Peinado, M.A., Torres, M.I., Thompson, R.P., & Esteban, F.J. (2000). Immunolocalization of the HNK-1 epitope in the autonomic innervation to the liver and upper digestive tract of the developing rat embryo. Histochem J 32, 439446.
Reckova, M., Rosengarten, C., DeAlmeida, A., Stanley, C.P., Wessels, A., Gourdie, R.G., Thompson, R.P., & Sedmera, D. (2003). Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93, 7785.
Rentschler, S., Vaidya, D.M., Tamaddon, H., Degenhardt, K., Sassoon, D., Morley, G.E., Jalife, J., & Fishman, G.I. (2001). Visualization and functional characterization of the developing murine cardiac conduction system. Development 128, 17851792.
Rentschler, S., Zander, J., Meyers, K., France, D., Levine, R., Porter, G., Rivkees, S.A., Morley, G.E., & Fishman, G.I. (2002). Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci USA 99, 1046410469.
Sedmera, D., Kucera, P., & Raddatz, E. (2002). Developmental changes in cardiac recovery from anoxia-reoxygenation. Am J Physiol Regul Integr Comp Physiol 283, R379388.
Sedmera, D., Pexieder, T., Rychterova, V., Hu, N., & Clark, E.B. (1999). Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 254, 238252.
Sedmera, D., Pexieder, T., Vuillemin, M., Thompson, R.P., & Anderson, R.H. (2000). Developmental patterning of the myocardium. Anat Rec 258, 319337.
Sedmera, D., Reckova, M., Bigelow, M.R., DeAlmeida, A., Stanley, C.P., Mikawa, T., Gourdie, R.G., & Thompson, R.P. (2004). Developmental transitions in electrical activation patterns in chick embryonic heart. Anat Rec 280A, 10011009.
Sedmera, D., Reckova, M., DeAlmeida, A., Coppen, S.R., Kubalak, S.W., Gourdie, R.G., & Thompson, R.P. (2003a). Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. Anat Rec 274A, 773777.
Sedmera, D., Reckova, M., DeAlmeida, A., Sedmerova, M., Biermann, M., Volejnik, J., Sarre, A., Raddatz, E., McCarthy, R.A., Gourdie, R.G., & Thompson, R.P. (2003b). Functional and morphological evidence for a ventricular conduction system in the zebrafish and Xenopus heart. Am J Physiol Heart Circ Physiol 284, H1152H1160.
Tamaddon, H.S., Vaidya, D., Simon, A.M., Paul, D.L., Jalife, J., & Morley, G.E. (2000). High-resolution optical mapping of the right bundle branch in connexin40 knockout mice reveals slow conduction in the specialized conduction system. Circ Res 87, 929936.
Thompson, R.P., Reckova, M., DeAlmeida, A., Bigelow, M., Stanley, C.P., Spruill, J.B., Trusk, T., & Sedmera, D. (2003). The oldest, toughest cells in the heart. In Development of the Cardiac Conduction System, Chadwick, D.J. & Goode, J. (Eds.), pp. 157176. Chichester, UK: Wiley.
Vaidya, D., Tamaddon, H.S., Lo, C.W., Taffet, S.M., Delmar, M., Morley, G.E., & Jalife, J. (2001). Null mutation of connexin43 causes slow propagation of ventricular activation in the late stages of mouse embryonic development. Circ Res 88, 11961202.
Wessels, A. & Sedmera, D. (2003). Developmental anatomy of the heart: A tale of mice and man. Physiol Genomics 15, 165176.
Witkowski, F.X., Clark, R.B., Larsen, T.S., Melnikov, A., & Giles, W.R. (1997). Voltage-sensitive dye recordings of electrophysiological activation in a Langendorff-perfused mouse heart. Can J Cardiol 13, 10771082.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 160 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.