Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-16T10:52:04.177Z Has data issue: false hasContentIssue false

Record of Alteration by Heavy Ices in a Cometary Clast in a Primitive Meteorite

Published online by Cambridge University Press:  30 July 2021

Katherine Burgess
Affiliation:
U.S. Naval Research Laboratory, District of Columbia, United States
Rhonda Stroud
Affiliation:
U.S. Naval Research Laboratory, United States
Larry Nittler
Affiliation:
Carnegie Institution of Washington, United States
Josep Trigo-Rodriguez
Affiliation:
Meteorites, Minor Bodies and Planetary Sciences Group, Institute of Space Sciences (CSIC-IEEC), Barcelona, Catalonia, Spain, Catalonia, Spain

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Moon Dust, Minerals and Microscopy
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Nittler, L. R. et al. A cometary building block in a primitive asteroidal meteorite. Nat. Astron. 3, 659-666, doi:10.1038/s41550-019-0737-8 (2019).CrossRefGoogle Scholar
Sakamoto, N. et al. Remnants of the early Solar System water enriched in heavy oxygen isotopes. Science 317, 231-233, doi:10.1126/science.1142021 (2007).CrossRefGoogle ScholarPubMed
Seto, Y. et al. Mineralogical characterization of a unique material having heavy oxygen isotope anomaly in matrix of the primitive carbonaceous chondrite Acfer 094. Geochim. Cosmochim. Acta 72, 2723-2734, doi:10.1016/j.gca.2008.03.010 (2008).CrossRefGoogle Scholar
Starkey, N. A., Franchi, I. A. & Lee, M. R. Isotopic diversity in interplanetary dust particles and preservation of extreme 16O-depletion. Geochim. Cosmochim. Acta 142, 115-131, doi:10.1016/j.gca.2014.07.011 (2014).CrossRefGoogle Scholar
Yabuta, H. et al. Formation of an ultracarbonaceous Antarctic micrometeorite through minimal aqueous alteration in a small porous icy body. Geochim. Cosmochim. Acta 214, 172-190, doi:10.1016/j.gca.2017.06.047 (2017).CrossRefGoogle Scholar
Trigo-Rodríguez, J. M., Llorca, J. & Fabregat, J. Chemical abundances determined from meteor spectra — II. Evidence for enlarged sodium abundances in meteoroids. Mon Not R Astron Soc 348, 802-810, doi:10.1111/j.1365-2966.2004.07389.x (2004).CrossRefGoogle Scholar
Bradley, J. P. et al. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc. Nat. Acad. Sci. 111, 1732-1735, doi:10.1073/pnas.1320115111 (2014).CrossRefGoogle ScholarPubMed
Garvie, L. A. J. & Buseck, P. R. Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites. Meteor. Planet. Sci. 42, 2111-2117, doi:10.1111/j.1945-5100.2007.tb01011.x (2007).CrossRefGoogle Scholar