Skip to main content

A Simplified Implementation of Edge Detection in MATLAB is Faster and More Sensitive than Fast Fourier Transform for Actin Fiber Alignment Quantification

  • Steven Frank Kemeny (a1) and Alisa Morss Clyne (a2)

Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.

Corresponding author
Corresponding author. E-mail:
Hide All
Barbee K.A., Mundel T., Lal R. & Davies P.F. (1995). Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol Heart Circ Physiol 268(4), H1765–1772.
Chaudhuri B., Kundu P. & Sarkar N. (1993). Detection and gradation of oriented texture. Pattern Recogn Lett 14(2), 147153.
Chaudhuri S., Nguyen H., Rangayyan R.M., Walsh S. & Frank C.B. (1987). A Fourier domain directional filterng method for analysis of collagen alignment in ligaments. IEEE Trans Biomed Eng 34(7), 509518.
David M.W.A. (1989). Two-dimensional finite impulse repsonse filters. U.S. Patent 4,821,223, April 11, 1989.
Davies P.F., Dewey C.F. Jr., Bussolari S.R., Gordon E.J. & Gimbrone M.A. Jr. (1984). Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73(4), 11211129.
DeMeester S.L., Cobb J.P., Hotchkiss R.S., Osborne D.F., Karl I.E., Tinsley K.W. & Buchman T.G. (1998). Stress-induced fractal rearrangement of the endothelial cell cytoskeleton causes apoptosis. Surgery 124(2), 362371.
Dewey C.F. Jr., Bussolari S.R., Gimbrone M.A. Jr. & Davies P.F. (1981). The dynamic response of vascular endothelial cells to fluid shear stress. J Biomechan Eng 103(3), 177185.
Dixelius J., Cross M., Matsumoto T., Sasaki T., Timpl R. & Claesson-Welsh L. (2002). Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer Res 62(7), 19441947.
Duda R.O. & Hart P.E. (1973). Pattern Classification and Scene Analysis. New York: John Wiley & Sons, Inc.
Eskin S.G., Ives C.L., McIntire L.V. & Navarro L.T. (1984). Response of cultured endothelial cells to steady flow. Microvasc Res 28(1), 8794.
Flaherty J.T., Pierce J.E., Ferrans V.J., Patel D.J., Tucker W.K. & Fry D.L. (1972). Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res 30(1), 2333.
Fuseler J.W., Millette C.F., Davis J.M. & Carver W. (2007). Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microsc Microanal 13(2), 133143.
Galbraith C.G., Skalak R. & Chien S. (1998). Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskel 40, 317330.
Ganesan L. & Bhattacharyya P. (1997). Edge detection in untextured and textured images-a common computational framework. IEEE Trans Syst Man Cy B 27(5), 823834.
Girard P.R. & Nerem R.M. (1995). Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J Cell Physiol 163(1), 179193.
Gonzalez R.C. & Wintz P. (1977). Digital Image Processing. Reading, MA: Addison-Wesley Publishing Company, Inc.
Karlon W.J., Hsu P.-P., Li S., Chien S., McCulloch A.D. & Omens J.H. (1999). Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Ann Biomed Eng 27(6), 712720.
Kaunas R., Nguyen P., Usami S. & Chien S. (2005). Cooperative effects of Rho and mechanical stretch on stress fiber organization. PNAS 102(44), 1589515900.
Kaunas R., Usami S. & Chien S. (2006). Regulation of stretch-induced JNK activation by stress fiber orientation. Cell Signal 18(11), 19241931.
Kim A., Lakshman N. & Petroll W.M. (2006). Quantitative assessment of local collagen matrix remodeling in 3-D culture: The role of Rho kinase. Exp Cell Res 312(18), 36833692.
Knight M., Idowu B., Lee D. & Bader D. (2001). Temporal changes in cytoskeletal organisation within isolated chondrocytes quantified using a novel image analysis technique. Med Biol Eng Comput 39(3), 397404.
Leemreis J.R., Versteilen A.M.G., Sipkema P., Groeneveld A.B.J. & Musters R.J.P. (2006). Digital image analysis of cytoskeletal F-actin disintegration in renal microvascular endothelium following ischemia/reperfusion. Cytom A 69(9), 973978.
Marquez J.P. (2006). Fourier analysis and automated measurement of cell and fiber angular orientation distributions. Int J Solids Struct 43(21), 64136423.
Marr D. & Hildreth E. (1980). Theory of edge detection. P R Soc Lond B Bio 207(1167), 187217.
Masters B.R. (2004). Fractual analysis of the vascular tree in the human retina. Ann Rev Biomed Eng 6(1), 427452.
Ng C.P., Hinz B. & Swartz M.A. (2005). Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118(20), 47314739.
Nishimura T. & Ansell M.P. (2002). Fast Fourier transform and filtered image analyses of fiber orientation in OSB. Wood Sci Technol 36(4), 287307.
Otsu N. (1979). A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cy 9(1), 6266.
Palmer B. & Bizios R. (1997). Quantitative characterization of vascular endothelial cell morphology and orientation using Fourier transform analysis. J Biomechan Eng 119, 159165.
Pearlman E., Weber K.T., Janicki J.S., Pietra G.G. & Fishman A.P. (1982). Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 46(2), 158164.
Petroll W., Cavanagh H., Barry P., Andrews P. & Jester J. (1993). Quantitative analysis of stress fiber orientation during corneal wound contraction. J Cell Sci 104(2), 353363.
Pourdeyhimi B., Ramanathan R. & Dent R. (1996). Measuring fiber orientation in nonwovens: Part I: Simulation. Textile Res J 66(11), 713722.
Rabiner L. (1972). Linear program design of finite impulse response (FIR) digital filters. IEEE Trans Audio Electroacoust 20(4), 280288.
Sahai E., Olson M.F. & Marshall C.J. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 20(4), 755766.
Sobel I. & Feldman J.A. (1968). A 3×3 isotropic gradient operator for image processing. In Stanford Artificial Project. Stanford, CA: Stanford University.
Thomason D.B., Anderson O. III & Menon V. (1996). Fractal analysis of cytoskeleton rearrangement in cardiac muscle during head-down tilt. J Appl Physiol 81(4), 15221527.
Vartanian K.B., Kirkpatrick S.J., Hanson S.R. & Hinds M.T. (2008). Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem Biophys Res Comm 371(4), 787792.
Versari S., Villa A., Bradamante S. & Maier J.A.M. (2007). Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim Biophys Acta MolCell Res 1773(11), 16451652.
Yang C.-F., Crosby C.M., Eusufzai A.R.K. & Mark R.E. (1987). Determination of paper sheet fiber orientation distributions by a laser optical diffraction method. J Appl Polym Sci 34(3), 11451157.
Yoshigi M., Clark E.B. & Yost H.J. (2003). Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing. Cytom A 55A(2), 109118.
Yurchenco P. & Schittny J. (1990). Molecular architecture of basement membranes. FASEB J 4(6), 15771590.
Zhou Y. & Zheng Y.-P. (2008). Estimation of muscle fiber orientation in ultrasound images using revoting hough transform (RVHT). Ultrasound Med Biol 34(9), 14741481.
Zuijlen P.P.v., Vries H.J.d., Lamme E.N., Coppens J.E., Marle J.v., Kreis R.W. & Middelkoop E. (2002). Morphometry of dermal collagen orientation by Fourier analysis is superior to multi-observer assessment. J Pathol 198(3), 284291.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 32
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 352 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.