Skip to main content Accesibility Help
×
×
Home

Spectroscopic and Microscopic Study of Peroxyformic Pulping of Agave Waste

  • Hilda M. Hernández-Hernández (a1), Jorge J. Chanona-Pérez (a2), Alberto Vega (a3), Pablo Ligero (a3), Reynold R. Farrera-Rebollo (a2), Jorge A. Mendoza-Pérez (a4), Georgina Calderón-Domínguez (a2) and Norma Güemes Vera (a1)...
Abstract

The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60–180 min), formic acid concentration (80–95%), temperature (60–80°C), and hydrogen peroxide concentration (2–4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables. Mathematical optimization enabled us to select a set of operational variables that produced the best fractionation of the material with the following results: pulp yield (26.9%), KN (3.6), and pulp viscosity (777 mL/g). Furthermore, this work allowed the description and evaluation of changes to the agave fibers during the fractionation process using different microscopic and spectroscopic techniques, and provided a comprehensive and qualitative view of the phenomena occurring in the delignification of agave fibers. The use of confocal and scanning electron microscopy provided a detailed understanding of the microstructural changes to the lignin and cellulose in the fibers throughout the process, whereas Raman spectroscopy and X-ray diffraction analysis indicated that cellulose in the pulp after treatment was mainly of type I.

Copyright
Corresponding author
* Corresponding author. hilda2hdez@hotmail.com
References
Hide All
Agarwal, U.P. & Ralph, S.A. (1997). FT–Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). J Appl Spectrosc 51, 16481655.
Agarwal, U.P. & Reiner, R.S. (2009). Near–IR surface-enhanced Raman spectrum of lignin. J Raman Spectrosc 40, 15271534.
Agarwal, U.P., McSweeny, J.D. & Ralph, S.A. (2011). FT–Raman investigation of milled-wood lignins: Softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31, 324344.
Altinisik, A., Seki, Y., Ertas, S., Akar, E., Bozac, E. & Seki, Y. (2015). Evaluating of Agave americana fibres for biosorption of dye from aqueous Solution. Fibre Polym 16(2), 370377.
Basu, G., Roy, A.N., Satapathy, K.K., Abbas, S.k. & Chakraborty, L.M.R. (2012). Potentially for value-added technical use of Indian sisal. Ind Crop Prod 36, 3340.
Bateni, H. & Karimi, K. (2016). Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem Eng Res Des 107, 4–12.
Bessadok, A., Langevin, D., Gouanvé, F., Chappey, C., Roudesli, S. & Marais, S. (2009). Study of water sorption on modified agave fibres. Carbohyd Polym 76, 7485.
Carvalho, W.S., Oliveira, T.J., Cardoso Cássia, R. & Ataídea, C.H. (2015). Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum. Chem Eng Res Des 9, 53375345.
Castillo-Carvajal, L.C., Pedroza-Rodríguez, A.M. & Barragan-Huerta, B.E. (2013). Adsorption and biological removal of basic green 4 dye using white-rot fungi immobilized on Agave tequilana weber waste. Fresen Environ Bull 22, 23342343.
Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A. & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81, 720725.
Corbin, K.R., Byrt, C.S., Bauer, S., DeBolt, S., Chambers, D., Holtum, J.A.M., Karem, G., Henderson, M., Lahnstein, J., Beahan, C.T., Bacic, A., Fincher, G.B., Betts, N.S. & Burton, R.A. (2015). Prospecting for energy-rich renewable raw materials: Agave leaf case study. PLoS One 10, 123.
Davis, S.C. & Long, S.P. (2015). Sisal/agave. In Industrial Crops Breeding for BioEnergy and Bioproducts, Cruz, V.M.V. & Dierig, D.A. (Eds.), pp. 335350. New Delhi, India: Springer.
El Oudiani, A., Chaabouni, Y., Msahli, S. & Sakli, F. (2012). Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crops Prod 36, 257266.
Ferrer, A., Vega, A., Rodríguez, A. & Jiménez, L. (2013). Acetosolv pulping for the fractionation of empty fruit bunches from palm oil industry. Bioresource Technol 132, 115120.
Ferrer, A., Vega, A., Rodríguez, A., Ligero, P. & Jiménez, L. (2011). Milox fractionation of empty fruit bunches from Elaeis guineensis . Bioresource Technol 102, 97559762.
Ganduri, L., Van der Merwe, A.F. & Matope, S. (2015). Economic model for the production of spirit, inulin and syrup from the locally eco-friendly Agave americana . Procedia CIRP 28, 173178.
Gomes, Y.F., Medeiros, P.N., Bomio, M.R.D., Santos, I.M.G., Paskocimas, C.A., Nascimento, R.M. & Motta, F.V. (2015). Optimizing the synthesis of cobalt aluminate pigment using fractional factorial design. Ceram Int 41, 699706.
González, D., Campos, A.R., Cunha, A.M., Santos, V. & Parajó, J.C. (2010 a). Utilization of fibers obtained by peroxyformic acid processing of broom as reinforcing agents for biocomposites. BioResources 5, 25912610.
González, G.S., Moreira, M.T., Artal, G., Maldonado, L. & Feijoo, G. (2010 b). Environmental impact assessment of non-wood based pulp production by soda-anthraquinone pulping process. J Clean Prod 18, 137145.
Gumeta-Chávez, C., Chanona-Pérez, J.J., Mendoza-Pérez, J.A., Terrés-Rojas, E., Garibay-Febles, V. & Gutiérrez-López, G.F. (2011). Shrinkage and deformation of Agave atrovirens karw tissue during convective drying: Influence of structural arrangements. Drying Technol 29, 612623.
Hernández-Botello, M.T., Chanona-Pérez, J.J., Mendoza-Pérez, J.A., Trejo-Valdez, M., Calderón-Domínguez, G., Barriada Pereira, J.L., Sastre de Vicente, M.E., Perea-Flores, M.J. & Terrés-Rojas, E. (2014). Effect of the fluidized bed drying on the structure and biosorption capability of Pb+2 of agave epidermis. Rev Mex Ing Quim 13(3), 865885.
Hernández-Hernández, H.M., Chanona-Pérez, J.J., Calderón-Domínguez, G., Perea-Flores, M.J., Mendoza-Pérez Jorge, A., Vega, A., Ligero, P., Palacios-González, E. & Farrera-Rebollo, R.R. (2014). Evaluation of agave fiber delignification by means of microscopy techniques and image analysis. Microsc Microanal 20, 14361446.
Hu, Y., Tang, L., Lu, Q., Wang, S., Chen, X. & Huang, B. (2014). Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21, 16111618.
Idarraga, G., Ramos, J., Zuniga, V., Sahin, T. & Young, R.A. (1999). Pulp and paper from blue agave waste from tequila production. J Agric Food Chem 47, 44504455.
Karimi, K. & Chisti, Y. (2015). Future of bioethnol. Biofuel Res J 5, 147147.
Kavkler, K. & Demsarc, A. (2011). Examination of cellulose textile fibres in historical objects by micro-Raman spectroscopy. Spectrochim Acta Mol Biomol Spectrosc 78, 740746.
Kestur, G.S., Flores-Sahagun, T.H.S., Dos Santos, L.P., Dos Santos, J., Mazzaro, I. & Mikowski, A. (2013). Characterization of blue agave bagasse fibres of Mexico. Compos Part A Appl Sci Manuf 45, 153161.
Ligero, P., Vega, A. & Villaverde, J.J. (2010). Delignification of Miscanthus giganteus by the Milox process. Bioresource Technol 101, 31883193.
Ligero, P., Villaverde, J.J., Vega, A. & Bao, M. (2008). Acetosolv delignification of depithed cardoon (Cynara cardunculus) stalks. Ind Crops Prod 25, 294300.
Lima, C.S.S., Conceição, M.M., Silva, F.L.H., Lima, E.E., Conrado, L.S. & Leão, D.A.S. (2013). Characterization of acid hydrolysis of sisal. Appl Energy 102, 254259.
Ma, J.F., Yang, G.H., Mao, J.Z. & Xu, F. (2011). Characterization of anatomy, ultrastructure and lignin microdistribution in Forsythia suspense . Ind Crops Prod 33, 358363.
Madani, S., Gheshlaghi, R., Akhavan Mahdavi, M., Sobhani, M. & Elkamel, A. (2015). Optimization of the performance of a double-chamber microbial fuel cell through factorial design of experiments and response surface methodology. Fuel 150, 434440.
Medina-Morales, M.A., Contreras-Esquivel, J.C., De la Garza-Toledo, H., Rodríguez, R. & Aguilar, C.N. (2011). Enzymatic bioconversion of agave leaves fiber hydrolysis using Plackett-Burman design. Am J Agric Biol Sci 6, 480485.
Mellado-Mojica, E. & López, M.G. (2015). Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD. Food Chem 167, 349357.
Mielenz, J.R., Rodriguez, M. Jr., Thompson, O.A., Yang, X. & Yin, H. (2015). Development of Agave as a dedicated biomass source: Production of biofuels from whole plants. Biotechnol Biofuels 8, 79.
Montañez, J.L., Victoria, J.C., Flores, R. & Vivar, M.A. (2011). Fermentation of Agave tequilana Weber azul fructans by Zymomonas mobilis and Saccharomices cerevesiae in the production of bioethanol. Inf Technol 22, 314.
Montgomery, D.C. (2011). Design and Analysis of Experiments. Mexico: LimusaWiley, p. 456.
Moriana, R., Vilaplana, F. & Ek, M. (2015). Forest residues as renewable resources for bio-based polymeric materials and bioenergy: Chemical composition, structure and thermal properties. Cellulose 22, 3409–3423.
Murugan, S. & Rajendran, S. (2013). Bioethanol production from Agave leaves using Saccharomices cerevesiae (MTCC 173) and Zymomonas mobilis (MTCC 2427). Int J Microbiol Res 4, 2326.
Ramírez Tobías, H.M., Niño Vázquez, R., Aguirre Rivera, J.R., Flores, J., De-Nova Vázquez, J.A. & Jarquin Gálvez, R. (2016). Seed viability and effect of temperature on germination of Agave angustifolia subsp. tequilana and A. mapisaga; two useful Agave species. Genet Resour Crop Evol 63, 881–888.
Reddy, K.O., Zhang, J., Zhang, J. & Rajulu, A.V. (2014). Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohyd Polym 114, 537545.
Segal, L., Creely, J., Martin, A. & Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29, 786794.
Singha, A.S. & Rana Raj, K. (2012). Functionalization of cellulosic fibres by graft copolymerization of acrylonitrile and ethyl acrylate from their binary mixtures. Carbohyd Polym 87, 500511.
Torres, I., Casas, A., Vega, E., Martínez-Ramos, M. & Delgado-Lemus, A. (2015). Population dynamics and sustainable management of mescal agaves in central Mexico: Agave potatorum in the tehuacán- cuicatlán valley. Econ Bot 69(1), 2641.
Villaverde, J.J., Ligero, P. & de Vega, A. (2011). Applicability of short totally chlorine free bleaching sequences to Miscanthus x giganteus organosolv pulps. Ind Eng Chem Res 50, 98479851.
Xu, F., Zhong, X.C., Sun, R.C. & Lu, Q. (2006). Anatomy, ultrastructure, and lignin distribution in cell wall of Caragana korshinskii . Ind Crops Prod 24, 186193.
Yang, D., Zhong, L.-X., Yuan, T.-Q., Peng, X.-W. & Sun, R.-C. (2013). Studies on the structural characterization of lignin, hemicelluloses and cellulose fractionated by ionic liquid followed by alkaline extraction from bamboo. Ind Crops Prod 43, 141149.
Yang, L., Lu, M., Carl, S., Mayer, J.A., Cushman, J.C., Tian, E. & Lin, H. (2015). Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass Bioenergy 76, 4353.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed