Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T12:16:34.845Z Has data issue: false hasContentIssue false

Time-Lapse Evaluation of Interactions Between Biodegradable Mg Particles and Cells

Published online by Cambridge University Press:  26 January 2016

Florencia Alvarez
Affiliation:
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), 1900 La Plata, Argentina
Rosa M. Lozano Puerto
Affiliation:
Cell-Biomaterial Recognition Group, Cellular and Molecular Biology Department, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
Blanca Pérez-Maceda
Affiliation:
Cell-Biomaterial Recognition Group, Cellular and Molecular Biology Department, Centro de Investigaciones Biológicas (CIB-CSIC), 28040 Madrid, Spain
Claudia A. Grillo
Affiliation:
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), 1900 La Plata, Argentina
Mónica Fernández Lorenzo de Mele*
Affiliation:
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), 1900 La Plata, Argentina Facultad de Ingeniería, Universidad Nacional de La Plata, 1900 La Plata, Argentina
*
*Corresponding author.mmele@inifta.unlp.edu.ar
Get access

Abstract

Mg-based implants have promising applications as biodegradable materials in medicine for orthopedic, dental, and cardiovascular therapies. During wear and degradation microdebris are released. Time-lapse multidimensional microscopy (MM) is proposed here as a suitable tool to follow, in fixed intervals over 24-h periods, the interaction between cells and particles. Results of MM show interactions of macrophages (J774) with the magnesium particles (MgPa) that led to modifications of cell size and morphology, a decrease in duplication rate, and cell damage. Corrosion products were progressively formed on the surface of the particles and turbulence was generated due to hydrogen development. Changes were more significant after treating MgPa with potassium fluoride. In order to complement MM observations, membrane damage as detected by a lactase dehydrogenase (LDH) assay and mitochondrial activity as detected by a WST-1 assay with macrophages and osteoblasts (MC3T3-E1) were compared. A more significant concentration-dependent effect was detected for macrophages exposed to MgPa than for osteoblasts. Accordingly, complementary data showed that viability and cell cycle seem to be more altered in macrophages. In addition, protein profiles and expression of proteins associated with the adhesion process changed in the presence of MgPa. These studies revealed that time-lapse MM is a helpful tool for monitoring changes of biodegradable materials and the biological surrounding in real time and in situ. This information is useful in studies related to biodegradable biomaterials.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

In memory of Florencia Alvarez (Flor) whose lovely life, plenty of fortitude, and spiritual values, we had the honor of sharing.

References

Alcaide, M., Ramírez-Santillán, C., Feito, M.J., De La Concepción Matesanz, M., Ruiz-Hernández, E., Arcos, D., Vallet-Regí, M. & Portolés, M.T. (2012). In vitro evaluation of glass-glass ceramic thermoseed-induced hyperthermia on human osteosarcoma cell line. J Biomed Mater Res A 100A(1), 6471.CrossRefGoogle Scholar
Anuradha, C.D., Kanno, S. & Hirano, S. (2000). Fluoride induces apoptosis by caspase-3 activation in human leukemia HL-60 cells. Arch Toxicol 74(4–5), 226230.CrossRefGoogle ScholarPubMed
Badar, M., Lünsdorf, H., Evertz, F., Rahim, M.I., Glasmacher, B., Hauser, H. & Mueller, P.P. (2013). The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants. Acta Biomater 9(7), 75807589.CrossRefGoogle ScholarPubMed
Baradez, M.-O. & Marshall, D. (2011). The use of multidimensional image-based analysis to accurately monitor cell growth in 3D bioreactor culture. PLoS One 6(10), e26104.CrossRefGoogle ScholarPubMed
Bergeron, S.E., Zhu, M., Thiem, S.M., Friderici, K.H. & Rubenstein, P.A. (2010). Ion-dependent polymerization differences between mammalian β- and γ-nonmuscle actin isoforms. J Biol Chem 285(21), 1608716095.CrossRefGoogle ScholarPubMed
Bondarenko, A., Hewicker-Trautwein, M., Erdmann, N., Angrisani, N., Reifenrath, J. & Meyer-Lindenberg, A. (2011). Comparison of morphological changes in efferent lymph nodes after implantation of resorbable and non-resorbable implants in rabbits. Biomed Eng 10, 32.Google ScholarPubMed
Bondarenko, A., Hewicker-Trautwein, M., Erdmann, N., Angrisani, N., Reifenrath, J., & Meyer-Lindenberg, A. (2011). Comparison of morphological changes in efferent lymph nodes after implantation of resorbable and non-resorbable implants in rabbits. BioMedical Engineering OnLine 10, 32. http://doi.org/10.1186/1475-925X-10-32CrossRefGoogle ScholarPubMed
Caicedo, M.S., Desai, R., McAllister, K., Reddy, A., Jacobs, J.J. & Hallab, N.J. (2009). Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: A novel mechanism for implant debris reactivity. J Orthop Res 27(7), 847854.CrossRefGoogle ScholarPubMed
Collins, T.J. (2007). ImageJ for microscopy. BioTechniques 43(Suppl 1), 2530.CrossRefGoogle ScholarPubMed
Davis, R.G., Goodman, S.B., Smith, R.L., Lerman, J.A. & Williams Iii, R.J. (1993). The effects of bone cement powder on human adherent monocytes/macrophages in vitro. J Biomed Mater Res 27(8), 10391046.CrossRefGoogle ScholarPubMed
Di Virgilio, A.L., Reigosa, M. & De Mele, M.F.L. (2011). Biocompatibility of magnesium particles evaluated by in vitro cytotoxicity and genotoxicity assays. J Biomed Mater Res B Appl Biomater 99B(1), 111119.CrossRefGoogle Scholar
Doyle, A., Griffiths, J.B. & Newell, D.G. (1995). Testing for Microbial Contamination. West Sussex, England: John Wiley & Sons Ltd.Google Scholar
Dumbleton, J.H. (1981). Tribology of Natural and Artificial Joints. Amsterdam, The Netherlands: Elsevier Science Publishing Co.Google Scholar
Freeman, M.A.R., Bradley, G.W. & Revell, P.A. (1982). Observations upon the interface between bone and polymethylmethacrylate cement. J Bone Joint Surg B 64(4), 489493.CrossRefGoogle ScholarPubMed
Gelb, H., Schumacher, H.R., Cuckler, J. & Baker, D.G. (1994). In vivo inflammatory response to polymethylmethacrylate particulate debris: Effect of size, morphology, and surface area. J Orthop Res 12(1), 8392.CrossRefGoogle ScholarPubMed
Glant, T.T. & Jacobs, J.J. (1994). Response of three murine macrophage populations to particulate debris: Bone resorption in organ cultures. J Orthop Res 12(5), 720731.CrossRefGoogle ScholarPubMed
Goldring, S.R., Clark, C.R. & Wright, T.M. (1993). The problem in total joint arthroplasty: Aseptic loosening. J Bone Joint Surg A 75(6), 799801.CrossRefGoogle ScholarPubMed
Gong, X., Fan, Y., Zhang, Y., Luo, C., Duan, X., Yang, L. & Pan, J. (2014). Inserted rest period resensitizes MC3T3-E1 cells to fluid shear stress in a time-dependent manner via F-actin-regulated mechanosensitive channel(s). Biosci Biotechnol Biochem 78(4), 565573.CrossRefGoogle Scholar
Goodman, S.B., Knoblich, G., O’Connor, M., Song, Y., Huie, P. & Sibley, R. (1996). Heterogeneity in cellular and cytokine profiles from multiple samples of tissue surrounding revised hip prostheses. J Biomed Mater Res 31(3), 421428.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Grillo, C.A., Alvarez, F. & de Mele, M.A. (2011). Biological effects of magnesium particles degradation on UMR-106 cell line: Influence of fluoride treatments. Colloids Surf B Biointerfaces 88(1), 471476.CrossRefGoogle ScholarPubMed
Gu, X.N., Xie, X.H., Li, N., Zheng, Y.F. & Qin, L. (2012). In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 8(6), 23602374.CrossRefGoogle ScholarPubMed
Guo, X.Y., Sun, G.F. & Sun, Y.C. (2003). Oxidative stress from fluoride-induced hepatotoxicity in rats. Fluoride 36(1), 2529.Google Scholar
Gutowska, I., Baranowska-Bosiacka, I., Baśkiewicz, M., Milo, B., Siennicka, A., Marchlewicz, M., Wiszniewska, B., Machaliński, B. & Stachowska, E. (2010). Fluoride as a pro-inflammatory factor and inhibitor of ATP bioavailability in differentiated human THP1 monocytic cells. Toxicol Lett 196(2), 7479.CrossRefGoogle ScholarPubMed
Harris, W.H., Schiller, A.L., Scholler, J.M., Freiberg, R.A. & Scott, R. (1976). Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg A 58(5), 612618.CrossRefGoogle ScholarPubMed
Hart, A.J., Quinn, P.D., Sampson, B., Sandison, A., Atkinson, K.D., Skinner, J.A., Powell, J.J. & Mosselmans, J.F.W. (2010). The chemical form of metallic debris in tissues surrounding metal-on-metal hips with unexplained failure. Acta Biomater 6(11), 44394446.CrossRefGoogle ScholarPubMed
Held, M., Schmitz, M.H.A., Fischer, B., Walter, T., Neumann, B., Olma, M.H., Peter, M., Ellenberg, J. & Gerlich, D.W. (2010). CellCognition: Time-resolved phenotype annotation in high-throughput live cell imaging. Nat Met 7(9), 747754.CrossRefGoogle ScholarPubMed
Hirano, S. & Suzuki, K.T. (1996). Exposure, metabolism, and toxicity of rare earths and related compounds. Environ Health Perspect 104(Suppl 1), 8595.Google ScholarPubMed
Horowitz, S.M., Frondoza, C.G. & Lennox, D.W. (1988). Effects of polymethylmethacrylate exposure upon macrophages. J Orthop Res 6(6), 827832.CrossRefGoogle ScholarPubMed
Horowitz, S.M. & Gonzales, J.B. (1996). Inflammatory response to implant particulates in a macrophage/osteoblast coculture model. Calcif Tissue Int 59(5), 392396.CrossRefGoogle Scholar
Horowitz, S.M. & Purdon, M.A. (1995). Mechanisms of cellular recruitment in aseptic loosening of prosthetic joint implants. Calcif Tissue Int 57(4), 301305.CrossRefGoogle ScholarPubMed
Huth, J., Buchholz, M., Kraus, J.M., Mølhave, K., Gradinaru, C., Wichert, G.V., Gress, T.M., Neumann, H. & Kestler, H.A. (2011). TimeLapseAnalyzer: Multi-target analysis for live-cell imaging and time-lapse microscopy. Comp Met Prog Biomed 104(2), 227234.CrossRefGoogle ScholarPubMed
Jasty, M.J., Floyd Iii, W.E., Schiller, A.L., Goldring, S.R. & Harris, W.H. (1986). Localized osteolysis in stable, non-septic total hip replacement. J Bone Joint Surg A 68(6), 912919.CrossRefGoogle ScholarPubMed
Johanson, N.A., Bullough, P.G., Wilson, P.D. Jr, Salvati, E.A. & Ranawat, C.S. (1987). The microscopic anatomy of the bone-cement interface in failed total hip arthroplasties. Clin Orthop Relat Res 218, 123135.CrossRefGoogle Scholar
Kang Jung, K., Chiba, J. & Rubash, H.E. (1994). In vivo and in vitro analysis of membranes from hip prostheses inserted without cement. J Bone Joint Surg A 76(2), 172180.Google Scholar
Kirkland, N.T. (2012). Magnesium biomaterials: Past, present and future. Corrosion Eng Sci Technol 47(5), 322328.CrossRefGoogle Scholar
Kleine, Z., Fairchild, A., Shi, B., Kuhn, T.B. & Liang, H. (2003). Cell adhesion in biomaterials—An introduction. 58th STLE Annual Meeting, New York, April 28–May 1.Google Scholar
Lind, M., Trindade, M.C.D., Yaszay, B., Goodman, S.B. & Smith, R.L. (1998). Effects of particulate debris on macrophage-dependent fibroblast stimulation in coculture. J Bone Joint Surg B 80(5), 924930.CrossRefGoogle ScholarPubMed
Lozano, R.M., Pérez-Maceda, B.T., Carboneras, M., Onofre-Bustamante, E., García-Alonso, M.C. & Escudero, M.L. (2013). Response of MC3T3-E1 osteoblasts, L929 fibroblasts, and J774 macrophages to fluoride surface-modified AZ31 magnesium alloy. J Biomed Mater Res A 101(10), 27532762.CrossRefGoogle ScholarPubMed
Luo, X.J., Qin, Q.P., Li, Y.L., Liu, Y.C., Chen, Z.F. & Liang, H. (2014). Three platinum(II) complexes of 2-(methoxy-phenyl)-imidazo-[4,5-f]-[1,10] phenanthroline: Cell apoptosis induction by sub-G1 phase cell cycle arrest and G-quadruplex binding properties. Inorg Chem Commun 46, 176179.CrossRefGoogle Scholar
Maloney, W.J. & Smith, R.L. (1995). Periprosthetic osteolysis in total hip arthroplasty: The role of particulate wear debris. J Bone Joint Surg Ser A 77(9), 14481461.CrossRefGoogle Scholar
Mao, L., Yuan, G., Niu, J., Zong, Y. & Ding, W. (2013). In vitro degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy by hydrofluoric acid treatment. Mater Sci Eng C 33(1), 242250.CrossRefGoogle ScholarPubMed
Mirra, J.M., Amstutz, H.C., Matos, M. & Gold, R. (1976). The pathology of the joint tissues and its clinical relevance in prosthesis failure. Clin Orthop 117, 221240.Google Scholar
Mueller, W.D., Lorenzo De Mele, M.F., Nascimento, M.L. & Zeddies, M. (2009). Degradation of magnesium and its alloys: Dependence on the composition of the synthetic biological media. J Biomed Mater Res A 90(2), 487495.CrossRefGoogle ScholarPubMed
Nakashima, Y., Sun, D.H., Trindade, M.C.D., Maloney, W.J., Goodman, S.B., Schurman, D.J. & Smith, R.L. (1999). Signaling pathways for tumor necrosis factor-α and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J Bone Joint Surg A 81(5), 603615.CrossRefGoogle ScholarPubMed
Ogunbileje, J.O., Nawgiri, R.S., Anetor, J.I., Akinosun, O.M., Farombi, E.O. & Okorodudu, A.O. (2014). Particles internalization, oxidative stress, apoptosis and pro-inflammatory cytokines in alveolar macrophages exposed to cement dust. Environ Toxicol Pharmacol 37(3), 10601070.CrossRefGoogle ScholarPubMed
Pereda, M.D., Alonso, C., Gamero, M., Del Valle, J.A. & Fernández Lorenzo De Mele, M. (2011). Comparative study of fluoride conversion coatings formed on biodegradable powder metallurgy Mg: The effect of chlorides at physiological level. Mater Sci Eng C 31(5), 858865.CrossRefGoogle Scholar
Posada, O.M., Tate, R.J. & Grant, M.H. (2015). Effects of CoCr metal wear debris generated from metal-on-metal hip implants and Co ions on human monocyte-like U937 cells. Toxicol Vitro 29(2), 271280.CrossRefGoogle ScholarPubMed
Reddy, J.M., Latha, P., Gowda, B., Manvikar, V., Vijayalaxmi, D.B. & Ponangi, K.C. (2014). Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni- Ti files—An in-vitro SEM study. J Int Oral Health 6(1), 8994.Google Scholar
Roth, I., Schumacher, S., Basler, T., Baumert, K., Seitz, J.-M., Evertz, F., Müller, P.P., Baümer, W. & Kietzmann, M. (2014). Magnesium corrosion particles do not interfere with the immune function of primary human and murine macrophages. Prog Biomater 4(1), 2130.CrossRefGoogle Scholar
Santavirta, S., Konttinen, Y.T., Hoikka, V. & Eskola, A. (1991). Immunopathological response to loose cementless acetabular components. J Bone Joint Surg B 73(1), 3842.CrossRefGoogle ScholarPubMed
Sawase, T. & Watanabe, I. (2015). Surface modification of titanium and its alloy by anodic oxidation for dental implant. In Implant Surfaces and their Biological and Clinical Impact, Wennerberg, A., Albrektsson, T., Jimbo, R. (Eds.), pp. 6576. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Scheideler, L., Füger, C., Schille, C., Rupp, F., Wendel, H.P., Hort, N., Reichel, H.P. & Geis-Gerstorfer, J. (2013). Comparison of different in vitro tests for biocompatibility screening of Mg alloys. Acta Biomater 9(10), 87408745.CrossRefGoogle ScholarPubMed
Schmalzried, T.P., Maloney, W.J., Jasty, M., Kwong, L.M. & Harris, W.H. (1993). Autopsy studies of the bone-cement interface in well-fixed cemented total hip arthroplasties. J Arthroplasty 8(2), 179188.CrossRefGoogle ScholarPubMed
Takeichi, M. & Okada, T.S. (1972). Roles of magnesium and calcium ions in cell-to-substrate adhesion. Exp Cell Res 74(1), 5160.CrossRefGoogle ScholarPubMed
Tanaka, Y., Morimoto, I., Nakano, Y., Okada, Y., Hirota, S., Nomura, S., Nakamura, T. & Eto, S. (1995). Osteoblasts are regulated by the cellular adhesion through ICAM-1 and VCAM-1. J Bone Miner Res 10(10), 14621469.CrossRefGoogle ScholarPubMed
Trindade, M.C.D., Nakashima, Y., Lind, M., Sun, D.H., Goodman, S.B., Maloney, W.J., Schurman, D.J. & Smith, R.L. (1999). Interleukin-4 inhibits granulocyte-macrophage colony-stimulating factor, interleukin-6, and tumor necrosis factor-alpha expression by human monocytes in response to polymethylmethacrylate particle challenge in vitro. J Orthop Res 17(6), 797802.CrossRefGoogle ScholarPubMed
Vandekerckhove, J. & Weber, K. (1978). At least six different actins are expressed in a higher mammal: An analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126(4), 783802.CrossRefGoogle Scholar
Wang, A.G., Xia, T., Chu, Q.L., Zhang, M., Liu, F., Chen, X.M. & Yang, K.D. (2004). Effects of fluoride on lipid peroxidation, DNA damage and apoptosis in human embryo hepatocytes. Biomed Environ Sci 17(2), 217222.Google ScholarPubMed
Wolters, L., Besdo, S., Angrisani, N., Wriggers, P., Hering, B., Seitz, J.M. & Reifenrath, J. (2015). Degradation behaviour of LAE442-based plate-screw-systems in an in vitro bone model. Mater Sci Eng C 49, 305315.CrossRefGoogle Scholar
Yang, X., Li, M., Lin, X., Tan, L., Lan, G., Li, L., Yin, Q., Xia, H., Zhang, Y. & Yang, K. (2013). Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg–Zn–Zr alloy by micro-arc oxidation coating contained Mg2SiO4. Surf Coat Technol 233, 6573.CrossRefGoogle Scholar
Zachman, A.L., Page, J.M., Prabhakar, G., Guelcher, S.A. & Sung, H.J. (2013). Elucidation of adhesion-dependent spontaneous apoptosis in macrophages using phase separated PEG/polyurethane films. Acta Biomater 9(2), 49644975.CrossRefGoogle ScholarPubMed
Zhai, Z., Qu, X., Li, H., Yang, K., Wan, P., Tan, L., Ouyang, Z., Liu, X., Tian, B., Xiao, F., Wang, W., Jiang, C., Tang, T., Fan, Q., Qin, A. & Dai, K. (2014). The effect of metallic magnesium degradation products on osteoclast-induced osteolysis and attenuation of NF-κB and NFATc1 signaling. Biomaterials 35(24), 62996310.CrossRefGoogle ScholarPubMed
Zhang, M., Wang, A., Xia, T. & He, P. (2008). Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-κB in primary cultured rat hippocampal neurons. Toxicol Lett 179(1), 15.CrossRefGoogle ScholarPubMed
Zhang, S., Li, J., Song, Y., Zhao, C., Zhang, X., Xie, C., Zhang, Y., Tao, H., He, Y., Jiang, Y. & Bian, Y. (2009). In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Mater Sci Eng C 29(6), 19071912.CrossRefGoogle Scholar
Supplementary material: File

Alvarez supplementary material

Figures S1-S4 and Table S1

Download Alvarez supplementary material(File)
File 1.6 MB