Skip to main content
×
×
Home

Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells

  • Haider Ali (a1) (a2) (a3), Xinbo Yang (a4) (a5), Klaus Weber (a4), Winston V. Schoenfeld (a1) (a2) (a3) (a6) and Kristopher O. Davis (a2) (a3)...
Abstract
Abstract

In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2−x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

Copyright
Corresponding author
* Corresponding author. alihaider@knights.ucf.edu
References
Hide All
Avasthi S., McClain W.E., Man G., Kahn A., Schwartz J. & Sturm J.C. (2013). Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl Phys Lett 102(20), 203901.
Battaglia C., de Nicolás S.M., De Wolf S., Yin X., Zheng M., Ballif C. & Javey A. (2014 a). Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl Phys Lett 104(11), 113902.
Battaglia C., Yin X., Zheng M., Sharp I.D., Chen T., McDonnell S., Azcatl A., Carraro C., Ma B., Maboudian R., Wallace R.M. & Javey A. (2014 b). Hole selective MoOx contact for silicon solar cells. Nano Lett 14(2), 967971.
Bivour M., Macco B., Temmler J., Kessels W.M.M. & Hermle M. (2016). Atomic layer deposited molybdenum oxide for the hole-selective contact of silicon solar cells. Energy Procedia 92, 443449.
Bivour M., Reichel C., Hermle M. & Glunz S.W. (2012). Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells. Sol Energ Mat Sol Cells 106, 1116.
Bivour M., Temmler J., Steinkemper H. & Hermle M. (2015). Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol Energ Mater Sol Cells 142, 3441.
Bullock J., Cuevas A., Allen T. & Battaglia C. (2014 a). Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells. Appl Phys Lett 105(23), 232109.
Bullock J., Cuevas A., Samundsett C., Yan D., McKeon J. & Wan Y. (2015). Simple silicon solar cells featuring an a-Si:H enhanced rear MIS contact. Sol Energ Mater Sol Cells 138, 2225.
Bullock J., Yan D., Wan Y., Cuevas A., Demaurex B., Hessler-Wyser A. & De Wolf S. (2014 b). Amorphous silicon passivated contacts for diffused junction silicon solar cells. J Appl Phys 115(16), 163703.
Cox R.H. & Strack H. (1967). Ohmic contacts for GaAs devices. Solid State Electron 10(12), 12131218.
De Wolf S., Descoeudres A., Holman Z.C. & Ballif C. (2012). High-efficiency silicon heterojunction solar cells: A review. Green 2(1), 724.
Feldmann F., Simon M., Bivour M., Reichel C., Hermle M. & Glunz S.W. (2014). Carrier-selective contacts for Si solar cells. Appl Phys Lett 104(18), 181105.
Gerling L.G., Mahato S., Morales-Vilches A., Masmitja G., Ortega P., Voz C., Alcubilla R. & Puigdollers J. (2016). Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells. Sol Energ Mater Sol Cells 145, 109115.
Heng J.B., Fu J., Kong B., Chae Y., Wang W., Xie Z., Reddy A., Lam K., Beitel C., Liao C., Erben C., Huang Z. & Xu Z. (2015). >23% high-efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines. IEEE J Photovolt 5(1), 8286.
Kim D.Y., Guijt E., van Swaaij R.A.C.M.M. & Zeman M. (2015). Development of a-SiOx:H solar cells with very high Voc × FF product. Prog Photovolt, 23(6), 671684.
Klett J., Ziegler J., Radetinac A., Kaiser B., Schafer R., Jaegermann W., Urbain F., Becker J.-P., Smirnov V. & Finger F. (2016). Band engineering for efficient catalyst-substrate coupling for photoelectrochemical water splitting. Phys Chem Chem Phys 18(16), 1075110757.
Peter Seif J., Descoeudres A., Filipič M., Smole F., Topič M., Charles Holman Z., De Wolf S. & Ballif C. (2014). Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. J Appl Phys 115(2), 024502.
Schneller E., Öğütman K., Guo S., Schoenfeld W.V. & Davis K.O. (2017). Crystalline silicon device loss analysis through spatially resolved quantum efficiency measurements. IEEE J Photovolt 7(4), 957965.
Yang X., Bi Q., Ali H., Davis K., Schoenfeld W.V. & Weber K. (2016 a). High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells. Adv Mater 28(28), 58915897.
Yang X., Zheng P., Bi Q. & Weber K. (2016 b). Silicon heterojunction solar cells with electron selective TiOx contact. Sol Energ Mater Sol Cells 150, 3238.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 11
Total number of PDF views: 1108 *
Loading metrics...

Abstract views

Total abstract views: 253 *
Loading metrics...

* Views captured on Cambridge Core between 15th August 2017 - 16th December 2017. This data will be updated every 24 hours.