Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T16:31:23.978Z Has data issue: false hasContentIssue false

Rare-earth crystal chemistry of thalénite-(Y) from different environments

Published online by Cambridge University Press:  28 February 2018

Markus B. Raschke*
Affiliation:
Department of Physics, Department of Chemistry, and JILA, University of Colorado, Boulder, Colorado 80309, USA
Evan J. D. Anderson
Affiliation:
Department of Physics, Department of Chemistry, and JILA, University of Colorado, Boulder, Colorado 80309, USA
Jason Van Fosson
Affiliation:
Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, USA
Julien M. Allaz
Affiliation:
Inst. für Geochemie und Petrologie, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
Joseph R. Smyth
Affiliation:
Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, USA
Radek Škoda
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
Philip M. Persson
Affiliation:
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
Randy Becker
Affiliation:
Yakima, Washington 98908, USA

Abstract

Thalénite-(Y), ideally Y3Si3O10F, is a heavy-rare-earth-rich silicate phase occurring in granite pegmatites that may help to illustrate rare-earth element (REE) chemistry and behaviour in natural systems. The crystal structure and mineral chemistry of thalénite-(Y) were analysed by electron microprobe analysis, X-ray diffraction and micro-Raman spectroscopy from a new locality in the peralkaline granite of the Golden Horn batholith, Okanogan County, Washington State, USA, in comparison with new analyses from the White Cloud pegmatite in the Pikes Peak batholith, Colorado, USA. The Golden Horn thalénite-(Y) occurs as late-stage sub-millimetre euhedral bladed transparent crystals in small miarolitic cavities in an arfvedsonite-bearing biotite granite. It exhibits growth zoning with distinct heavy-rare-earth element (HREE) vs. light-rare-earth element (LREE) enriched zones. The White Cloud thalénite-(Y) occurs in two distinct anhedral and botryoidal crystal habits of mostly homogenous composition. In addition, minor secondary thalénite-(Y) is recognized by its distinct Yb-rich composition (up to 0.8 atoms per formula unit (apfu) Yb). Single-crystal X-ray diffraction analysis and structure refinement reveals Y-site ordering with preferential HREE occupation of Y2 vs. Y1 and Y3 REE sites. Chondrite normalization shows continuous enrichment of HREE in White Cloud thalénite-(Y), in contrast to Golden Horn thalénite-(Y) with a slight depletion of the heaviest REE (Tm, Yb and Lu). The results suggest a hydrothermal origin of the Golden Horn miarolitic thalénite-(Y), compared to a combination of both primary magmatic followed by hydrothermal processes responsible for the multiple generations over a range of spatial scales in White Cloud thalénite-(Y).

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Stuart Mills

References

Angel, R.J., Ross, N.L., Wood, I.G. and Woods, P.A. (1992) Single crystal X-ray diffraction at high pressures with diamond-anvil cells. Phase Transitions, 39, 1332.CrossRefGoogle Scholar
Adams, J.W. and Sharp, W.H. (1972) Thalénite-(Y) and allanite derived from yttrofluorite in the White Cloud pegmatite, South Platte area, Colorado. U.S. Geological Survey Professional Paper, 800-C, 6369 pp. U.S. Geological Survey, Reston, Virginia, USA.Google Scholar
Adams, J.W., Hildebrand, F.A. and Havens, R.G. (1962) Thalenite from Teller County, Colorado. United States Geological Survey Professional Paper, 450-D, 68 pp. U.S. Geological Survey, Reston, Virginia, USA.Google Scholar
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M. (2006) Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551567.Google Scholar
Azavant, P. and Lichanot, A. (1993) X-ray scattering factors of oxygen and sulphur ions: an ab initio Hartree-Fock calculation. Acta Crystallographica, A49, 9197.Google Scholar
Bačík, P., Miyawaki, R., Atencio, D., Cámara, F. and Fridrichová, J. (2018) Nomenclature of the gadolinite supergroup. European Journal of Mineralogy, 29, 10671082.Google Scholar
Becerro, A.I., Naranjo, M. and Perdigón, A.C. and Trillo, J.M. (2003) Hydrothermal chemistry of silicates: low-temperature synthesis of y-yttrium disilicate. Journal of the American Ceramic Society, 86, 15921594.Google Scholar
Becker, R. (1991) Minerals of the Golden Horn Batholith, Okanogan County, Washington. Rocks and Minerals, 66, 453458.Google Scholar
Benedicks, C. (1898) Mötet den 3 November 1898 [Thalénit, frän Österby i Dalarne]. Geologiska Föreningens i Stockholm Förhandlingar, 20, 308312Google Scholar
Benedicks, C. (1900) Thalenit, ein neues Mineral aus Osterby in Dalekarlien. Bulletin of the Geological Institution of the University of Uppsala, 4, 115.Google Scholar
Boggs, R.C. (1980) Okanoganite, a new rare-earth borofluorosilicate from the Golden Horn batholith, Okanogan County, Washington. American Mineralogist, 65, 11381142.Google Scholar
Boggs, R. (1984) Mineralogy and Geochemistry of the Golden Horn Batholith, North Cascades, Washington. PhD dissertation, University of California, Santa Barbara, USA.Google Scholar
Boggs, R.C. (1988) Calciohilairite: CaZrSi3O9 3H2O, the calcium analogue of hilairite from the Golden Horn Batholith, northern Cascades, Washington. American Mineralogist, 73, 11911194.Google Scholar
Cromer, D.T. and Mann, J. (1968) X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Crystallographica, A24, 321323.Google Scholar
Đuričković, I., Claverie, R., Bourson, P., Marchettic, M., Chassot, J. M. and Fontana, M. (2011) Water-ice phase transition probed by Raman Spectroscopy. Journal of Raman Spectroscopy, 42, 14081412.Google Scholar
Eddy, E.P., Bowring, S.A., Miller, R.B. and Tepper, J.H. (2016) Rapid assembly and crystallization of a fossil large-volume silicic magma chamber. The Geology Society of America, 44, 331334.Google Scholar
Fitzpatrick, J. and Pabst, A. (1986) Thalenite from Arizona. American Mineralogist, 71, 188193.Google Scholar
Frost, C.D. and Frost, B.R. (1997). High-K, iron-enriched rapakivi-type granites: the tholeiite connection. Geology, 25, 647650.Google Scholar
Griffin, W.L., Nilssen, B. and Jensen, B.B. (1979) Britholite CD and its alteration: Reiarsdal, Vest-Agder, south Norway. Norsk Geologisk Tidsskrift, 58, 265271.Google Scholar
Gonzáles del Tánago, J., La Iglesia, A. and Delgado, A. (2006) Kamphaugite-(Y) from La Cabrera massif, Spain: a low-temperature hydrothermal Y-REE carbonate. Mineralogical Magazine, 70, 379404.Google Scholar
Haynes, C.V. Jr. (1965) Genesis of the White Cloud and related pegmatites, South Platte area, Jefferson County, Colorado. GSA Bulletin, 76, 441461.CrossRefGoogle Scholar
Kornev, A.N., Batalieva, N.G., Maksimov, B.A., Ilyukhin, V.V. and Belov, N.V. (1972) Crystal structure of thalénite-(Y) Y3[Si3O10](OH). Soviet Physics Doklady, 17, 8890, [translated from Doklady Akademii Nauk SSSR, 202, 1324–1327, 1972].Google Scholar
Kozireva, I.V., Svecova, I.V. and Popova, T.N. (2004) Occurrence of Nd thalenite in Pripolar Ural. Vestnik, 6, 23.Google Scholar
Kristiansen, R. (1993) Thalenitt-liknende mineraler fra Åskagen, Sverige. Stein, 1, 5960.Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Minakawa, T., Noto, S. and Morioka, H. (1999) Rare earth minerals in Shikoku, with special reference to the occurrence of rare earth minerals in pegmatites in Ryoke and Hiroshima granites. Memoirs of the Faculty of Science, Ehime University, 5, 132.Google Scholar
Misch, P. (1966) Tectonic evolution of the Northern Cascades of Washington State, in: Symposium on the tectonic history, mineral deposits of the western Cordillera: Canadian Institute of Mining and Metallurgy Special Publication, 8, 101148.Google Scholar
Müller-Bunz, H. and Schleid, T. (2000) Synthesis and constitution of fluorothalenite-type (Y3F[Si3O10]) fluoride catena-trisilicates M3F [Si3O10] with the lanthanides (M = Dy, Ho, Er). Zeitschrift für anorganische und allgemeine Chemie, 626, 845852.Google Scholar
Nagashima, K. and Kato, A. (1966) Chemical studies of minerals containing rarer elements from the Far East District. LX. Thalénite-(Y) from Suishoyama, Kawamata-machi, Fukushima Prefecture, Japan. Bulletin of the Chemical Society of Japan, 39, 47.Google Scholar
Peretyazhko, I.S. and Savina, E.A. (2010) Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immiscibility in magmatic systems. Petrology, 18, 514543.CrossRefGoogle Scholar
Putnis, A. and Putnis, C.V. (2007). The mechanism of reequilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry, 180, 17831786.Google Scholar
Raade, G. and Kristiansen, R. (2009) Fluorthalénite-(Y) from Hundholmen, Tysfjord, north Norway. Norsk Bergverksmuseum skrift [letters of the Norwegian Museum of Natural History], 41–21.Google Scholar
Schleid, T. and Müller-Bunz, , (1998) Einkirstalle von Y3F[Si3O10] im Thalenit-Typ. Zeitschrift für anorganische Chemie, 624, 10821084.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Simmons, W.B. Jr. and Heinrich, E.W. (1975) A summary of the petrogenesis of the granite-pegmatite system in the northern end of the Pikes Peak batholith: Fortschritte der Mineralogie, 52, 251264.Google Scholar
Simmons, W.B. Jr. and Heinrich, E.W. (1980) Rare earth pegmatites of the South Platte District, Colorado. Colorado Geological Survey Resource Series, 11, 131.Google Scholar
Škoda, R., Plášil, J., Jonsson, E., Čopjaková, R., Langhof, J. and Vašinová Galiová, M. (2015) Redefinition of thalénite-(Y) and discreditation of fluorthalénite-(Y): A re-investigation of type material from the Österby pegmatite, Dalarna, Sweden, and from additional localities. Mineralogical Magazine, 79, 965983.Google Scholar
Smith, D.R., Noblett, J., Wobus, R.A., Unruh, D., Douglass, J., Beane, R., Davis, C., Goldman, S., Kay, G., Gustavson, B., Saltoun, B. and Stewart, J. (1999) Petrology and geochemistry of late-stage intrusions of the A-type, mid-Proterozoic Pikes Peak batholith (Central Colorado, USA): implications for petrogenesis models. Precambrian Research, 98, 271305.Google Scholar
Smyth, J.R. (1988) Electrostatic characterization of oxygen sites in minerals. Geochimica et Cosmochimica Acta, 53, 11011110.Google Scholar
Smyth, J.R. and Clayton, R.N. (1988) Correlation of electrostatic site potentials with oxygen isotope fractionation in silicates. EOS Trans American Geophysical Union, 69, 1514.Google Scholar
Stepanov, A.V., Bekenova, G.K., Levin, V.L., Sokolova, E., Hawthorne, F.C. and Dobrovol'skaya, E.A. (2012) Tarbagataite, (K,□)2(Ca,Na)(Fe2+,Mn)7Ti2(Si4O12)2O2(OH)4(OH,F), a new astrophyllite-group mineral species from the Verkhnee Espe deposit, Akjailyautas mountains, Kazakhstan: Description and crystal structure. The Canadian Mineralogist, 50, 159168.Google Scholar
Stull, R. (1969) The Geochemistry of the Southeastern Portion of the Golden Horn Batholith, Northern Cascades, Washington. PhD dissertation, University of Washington, USA.Google Scholar
Sun, Q. and Zheng, H. (2009) Raman OH stretching vibration of ice Ih. Progress in Natural Science, 19, 16511654.Google Scholar
Veksler, I.V., Dorfman, A.M., Kamenetsky, M., Dulski, P. and Dingwell, D.B. (2005) Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta, 69, 28472860.CrossRefGoogle Scholar
Voloshin, A.V. and Pakhomovskii, Y.A. (1997) Fluorthalénite-(Y) – a new mineral from the amazonitic randpegmatites of the Kola Peninsula. Doklady Akademii Nauk, 354, 7778.Google Scholar
Vorma, A., Ojanperä, P., Hoffren, V., Siivola, J. and Löfgren, A. (1966) On the rare earth minerals from the Pyörönmaa pegmatite in Kangasala. Comptes Rendu de la Société Geologique de Finlande, 38, 241274.Google Scholar
Wayne, D.M. (1986) Electron microprobe analysis of rare-earth-element-bearing phases from the white cloud pegmatite, South Platte district, Jefferson County, Colorado. PhD Thesis, University of New Orleans, USA.Google Scholar
Williams, P.A., Hatert, F., Pasero, M. and Mills, S.J. (2014) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter No. 22. Mineralogical Magazine, 78, 12411248.Google Scholar
Yakubovich, O.V., Voloshin, A.V., Pakhomovskii, Ya.A. and Simonov, M.A. (1988) Refined crystal structure of thalenite. Soviet Physics, Crystallography, 33, 356358. [Original in Russian: Kristallografiya, 33, 605–608 (1988)].Google Scholar
Supplementary material: File

Raschke et al. supplementary material

Supplementary material

Download Raschke et al. supplementary material(File)
File 226.4 KB