Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T19:11:29.566Z Has data issue: false hasContentIssue false

Tombstoneite, a new mineral from Tombstone, Arizona, USA, with a pinwheel-like Te6+O3(Te4+O3)3 cluster

Published online by Cambridge University Press:  18 August 2022

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Stuart J. Mills
Affiliation:
Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
Robert M. Housley
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
Brent Thorne
Affiliation:
Earth Treasures, 3898 Newport Circle, Bountiful, UT 84010, USA
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new mineral tombstoneite (IMA2021-053), (Ca0.5Pb0.5)Pb3Cu2+6Te6+2O6(Te4+O3)6(Se4+O3)2(SO4)2⋅3H2O, occurs at the Grand Central mine in the Tombstone district, Cochise County, Arizona, USA, in cavities in quartz matrix in association with jarosite and rodalquilarite. Tombstoneite crystals are green pseudohexagonal tablets, up to 100 μm across and 20 μm thick. The mineral has a pale green streak and adamantine lustre. It is brittle with irregular fracture and a Mohs hardness of ~2½. It has one perfect cleavage on {001}. The calculated density is 5.680 g cm–3. Optically, the mineral is uniaxial (–) and exhibits pleochroism: O = green, E = light yellow green; O > E. The Raman spectrum exhibits bands consistent with Te6+O6, Te4+O3, Se4+O3 and SO4. Electron microprobe analysis provided the empirical formula (Ca0.51Pb0.49)Σ1.00Pb3.00Cu2+5.85Te6+2.00O6(Te4+1.00O3)6(Se4+0.69Te4+0.24S0.07O3)2(S1.00O4)2⋅3H2O. Tombstoneite is trigonal, P321, a = 9.1377(9), c = 12.2797(9) Å, V = 887.96(18) Å3 and Z = 1. The structure of tombstoneite (R1 = 0.0432 for 1205 I > 2σI) contains thick heteropolyhedral layers comprising Te6+O6 octahedra, Jahn-Teller distorted Cu2+O5 pyramids, Te4+O3 pyramids and Se4+O3 pyramids. Pb2+ cations without stereoactive 6s2 lone-pair electrons are hosted in pockets in the heteropolyhedral layer. Pb2+ cations, possibly with stereoactive 6s2 lone-pair electrons, are located in the interlayer region along with SO4 tetrahedra and H2O groups. Within the heteropolyhedral layer, the Te6+O6 octahedra and the Te4+O3 pyramids form finite Te6+O3(Te4+O3)3 clusters with a pinwheel-like configuration. This is the first known finite complex including both Te4+ and Te6+ polyhedra in any natural or synthetic tellurium oxysalt structure.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Bindi, L. and Cipriani, C. (2004) The crystal structure of winstanleyite, TiTe3O8, from the Grand Central mine, Tombstone, Arizona. The Canadian Mineralogist, 41, 14691473.CrossRefGoogle Scholar
Christy, A.G., Mills, S.J. and Kampf, A.R. (2016) A review of the structural architecture of tellurium oxycompounds. Mineralogical Magazine, 80, 415545.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C. and Back, M.E. (2008) The crystal structure of khinite and polytypism in khinite and parakhinite. Mineralogical Magazine, 72, 763770.CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Hillebrand, W.F. (1885) Emmonsite, a ferric tellurite. Proceedings of the Colorado Scientific Society, 2, 2023.Google Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Rumsey, M.S. and Spratt, J. (2012) Lead–tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite. American Mineralogist, 97, 212219.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J. and Rumsey, M.S. (2017) The discreditation of girdite. Mineralogical Magazine, 81, 11251128.CrossRefGoogle Scholar
Kampf, A.R., Housley, R.M., Rossman, G.R., Yang, H. and Downs, R.T. (2020) Adanite, a new lead-tellurite-sulfate mineral from the North Star mine, Tintic, Utah, and Tombstone, Arizona, U.S.A. The Canadian Mineralogist, 58, 403410.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Ma, C. and Thorne, B. (2021) Tombstoneite, IMA 2021–053. CNMNC Newsletter 63. Mineralogical Magazine, 85, https://doi.org/10.1180/mgm.2021.74Google Scholar
Kampf, A.R., Mills, S.J., Celestian, A.J., Ma, C., Yang, H. and Thorne, B. (2022) Flaggite, Pb4Cu2+4Te6+2(SO4)2O11(OH)2(H2O), a new mineral with stair-step-like HCP layers from Tombstone, Arizona, USA. Mineralogical Magazine, 86, 397404.CrossRefGoogle Scholar
Lam, A.E., Groat, L.A. and Ercit, T.S. (1998) The crystal structure of dugganite, Pb3Zn3Te6+As2O14. The Canadian Mineralogist, 36, 823830.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Mills, S.J. and Christy, A.G. (2013) Revised values of the bond valence parameters for TeIV–O, TeVI–O and TeIV–Cl. Acta Crystallographica, B69, 145149.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Christy, A.G., Housley, R., Thorne, B., Chen, Y.S. and Steele, I.M. (2014) Favreauite, a new selenite mineral from the El Dragón mine, Bolivia. European Journal of Mineralogy, 26, 771781.CrossRefGoogle Scholar
Missen, O.P., Kampf, A.R., Mills, S.J., Housley, R.M., Spratt, J., Welch, M.D., Coolbaugh, M.F., Marty, J., Chorazewicz, M. and Ferraris, C. (2019). The crystal structures of the mixed-valence tellurium oxysalts tlapallite, (Ca,Pb)3CaCu6[Te4+3Te6+O12]2(Te4+O3)2(SO4)2⋅3H2O, and carlfriesite, CaTe4+2Te6+O8. Mineralogical Magazine, 83, 539549.CrossRefGoogle Scholar
Missen, O.P., Weil, M., Mills, S.J., Libowitzky, E., Kolitsch, U. and Stöger, B. (2020) The crystal structures and Raman spectra of three new hydrothermally synthesized copper–zinc–oxotellurates (IV). Zeitschrift für anorganische und allgemeine Chemie, 646, 476488.CrossRefGoogle Scholar
Missen, O.P., Rumsey, M.S., Mills, S.J., Weil, M., Najorka, J., Spratt, J. and Kolitsch, U. (2021) Elucidating the natural–synthetic mismatch of Pb2+Te4+O3: The redefinition of fairbankite to Pb2+12 (Te4+O3)11(SO4). American Mineralogist, 106, 309316.CrossRefGoogle Scholar
Pertlik, F. (1972) Der Strukturtyp von Emmonsit, {Fe2[TeO3]3⋅H2O}⋅xH2O (x=0–1). Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 157168.CrossRefGoogle Scholar
Post, J.E., Von Dreele, R.B. and Buseck, P.R. (1982) Symmetry and cation displacements in hollandites: structure refinements of hollandite, cryptomelane and priderite. Acta Crystallographica, B38, 10561065.CrossRefGoogle Scholar
Richmond, W.E. and Fleischer, M. (1942) Cryptomelane, a new name for the commonest of the ‘psilomelane’ minerals. American Mineralogist, 27, 607610.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Tait, K.T., DiCecco, V., Ball, N.A., Hawthorne, F.C. and Kampf, A.R. (2014) Backite, Pb2Al(TeO6)Cl, a new tellurate mineral from the Grand Central mine, Tombstone Hills, Cochise County, Arizona: description and crystal structure. The Canadian Mineralogist, 52, 935942.CrossRefGoogle Scholar
Williams, S.A. (1978) Khinite, parakhinite, and dugganite, three new tellurates from Tombstone, AZ. American Mineralogist, 63, 10161019.Google Scholar
Williams, S.A. (1979) Girdite, oboyerite, fairbankite, and winstanleyite, four new tellurium minerals from Tombstone, AZ. Mineralogical Magazine, 43, 453457.CrossRefGoogle Scholar
Williams, S.A. (1980a) Schieffelinite, a new lead tellurate–sulfate from Tombstone, Arizona. Mineralogical Magazine, 43, 771773.CrossRefGoogle Scholar
Williams, S.A. (1980b) The Tombstone district, Cochise County, Arizona. Mineralogical Record, 11, 251256.Google Scholar
Yang, H., Gu, X., Gibbs, R.B. and Scott, M.M. (2022) Murphyite, IMA 2021–107. CNMNC Newsletter 66; Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.33Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 194.5 KB