Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-15T23:00:43.521Z Has data issue: false hasContentIssue false

Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits

Published online by Cambridge University Press:  05 July 2018

U. Kempe*
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany
J. Götze
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany

Abstract

Apatite samples from rare-metal mineralization were investigated by a combination of cathodoluminescence (CL) microscopy and spectroscopy, microchemical analysis and trace element analysis. Internal structures revealed by CL can be related to variations in the crystal chemistry and may sometimes reflect changes in the composition of the mineralizing fluids.

Apatite from mineralization related to alkaline rocks and carbonatites (Type 1) typically exhibits relatively homogeneous blue and lilac/violet CL colours due to activation by trace quantities of rare earth element ions (Ce3+, Eu2+, Sm3+, Dy3+ and Nd3+). These results correlate with determined trace element abundances, which show strong light rare earth element (LREE) enrichment for this type of apatite. However, a simple quantitative correlation between emission intensities of REE3+/2+ and analysed element concentrations was not found.

Apatite from P-rich altered granites, greisens, pegmatites and veins from Sn-W deposits (Type 2) shows strong Mn2+-activated yellow-greenish CL, partially with distinct oscillatory zoning. Variations in the intensity of the Mn2+-activated CL emission can be related either to varying Mn/Fe ratios (quenching of Mn activated CL by Fe) or to self-quenching effects in zones with high Mn contents (>2.0 wt.%). The REE distribution patterns of apatite reflect the specific geological position of each sample and may serve as a “tracer” for the REE behaviour within the ore system. Although the REE contents are sometimes as high as several hundred parts per million, the spectral CL measurements do not exhibit typical REE emission lines because of dominance of the Mn emission. In these samples, REE-activated luminescence is only detectable by time-resolved laser-induced luminescence spectroscopy.

Both types of apatite (Type 1 in the core and Type 2 in the rim) were found in single crystals from the Be deposit Ermakovka (Transbaikalia). This finding proves the existence of two stages of mineralization within this deposit.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbarand, J. and Pagel, M. (2001) Cathodoluminescence study of apatite crystals. American Mineralogist, 86, 473484.CrossRefGoogle Scholar
Baskina, V.A, Volchanskaya, I.K, Kovalenko, V.I., Samojlov, V.S., Vladykin, N.V., Goreglad, A.V., Suetenko, O.D. and Shuvalov, V.F. (1978) The potassic alkaline volcanic- plutonic massif at Mushugai Khuduk in Southern Mongolia and related mineralization. Sovetskaya geologiya, 4, 8699.(in Russian).Google Scholar
Bau, M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123, 323333.CrossRefGoogle Scholar
Blanc, P., Baumer, F., Cesbron, F. and Ohnenstetter, D. (1995) Les activateurs de cathodoluminescence dans des chlorapatites préparées par synthése hydrothermale. Comptes Rendus de l’Academie des Science Paris, 321, serie IIa, 11191126.Google Scholar
Blanc, P., Panczer, G. and Person, A. (1996) Example of apatite analysis by cathodoluminescence: teeth of the Mio-Pliocene mastodons. The French-Israeli workshop on apatites and lasers, Jerusalem, Scientific program and workshop abstracts.Google Scholar
Blanc, P., Baumer, F., Cesbron, F., Ohnenstetter, D., Panczer, G. and Rémond, G. (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and zircon. Pp. 127160 in: Caihodoluminescence in Geoscience. (Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D., editors). Springer Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Boudreau, A.E. and Kruger, F.J. (1990) Variation in the composition of apatite through the Merensky cyclic unit in the Western Bushveld Complex. Economic Geology, 85, 737745.CrossRefGoogle Scholar
Coulson, I.M. and Chambers, A.D. (1996) Patterns of zonation in rare-earth-bearing minerals in nepheline syenites of the North Qôroq Center, South Greenland. Canadian Mineralogist, 34, 11631178.Google Scholar
Elliot, J.C. (1994) Structure and Chemistry of the Apatites and other Calcium Orthophosphate s. Elsevier, Amsterdam, London, New York, Tokyo.Google Scholar
Filippelli, G.M. and Delaney, M.L. (1993) The effects of manganese(II) and iron(II) on the cathodoluminescence signal in synthetic apatite. Journal of Sedimentary Petrology, 63, 167173.Google Scholar
Finch, A.A. (1992) Cathodoluminescence microscopy in the characterisation of rocks and ceramics. Proceedings of the Royal Microscopy Society, 27, 179184.Google Scholar
Finch, A A. and Fletcher, J.G. (1992) Vitusite – an apatite derivative structure. Mineralogical Magazine, 56, 235239.CrossRefGoogle Scholar
Fleischer, M. and Altschuler, Z.S. (1986) The lanthanides and yttrium in minerals of the apatite group – an analysis of the available data. Neues Jahrbuch für Mineralogie Monatshefte, 1986(10), 467480.Google Scholar
Gaft, M., Reisfeld, R., Panczer, G., Blank, P. and Boulon, G. (1998) Laser-induced time-resolved luminescence of minerals. Spetrochimica Acta Part A, 54, 21632175.CrossRefGoogle Scholar
Gavrilenko, V., Morozov, M., Kempe, U., Smolenskiy, V. and Wolf, D. (1997) Unusual REE distribution patterns in fiuorites from Sn-W deposits of the quartz-cassiterite and quartz-wolframite type. Journal of the Czech Geological Society, 42, 36.(abstract).Google Scholar
Goldstein, S., Kempe, U. and Klemm, W. (1995) REE in fluorite from tin deposits in the Erzgebirge region: Implications for the origin of Eu-anomalies in Li-F granites. European Journal of Mineralogy, 7, Beiheft 1, 85 (abstract).Google Scholar
Götze, J., Heimann, R.B., Hildebrandt, H. and Gburek, U. (2001) Microstructural investigation into calcium phosphate biomaterials by spatially resolved cathodoluminescence. Materialwissensc haft und Werkstofftechnik, 31, 17.Google Scholar
Habermann, D., Neuser, R.D. and Richter, D.K. (2000) Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. Pp. 331358 in: Cathodoluminescence in Geoscience. (Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D., editors). Springer Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Hösel, G. (1994) Das Zinnerz-Lagerstättengebiet Ehrenfriedersdorf/Erzgebirge. Sächsisches Landesamt für Umwelt und Geologie, Radebeul und Sächsisches Oberbergamt, Freiberg, Germany.Google Scholar
Hughes, J.M., Cameron, M. and Crowley, K.D. (1991 a) Ordering of divalent cations in the apatite structure: crystal structure refinements of natural Mn- and Sr-bearing apatite. American Mineralogist, 76, 18571862.Google Scholar
Hughes, J.M., Cameron, M. and Mariano, A.M. (1991 b) Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatite. American Mineralogist, 76, 11651173.Google Scholar
Irber, W. (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/ Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63, 489508.CrossRefGoogle Scholar
Jachovsky, T. (1994) Inner structure of tin-tungsten bearing cupolas near Krásno (Slavkovsky Les Mts.). Pp. 137141 in: Metallogeny of Collisional Orogen. (Seltmann, R., Kämpf, H. and Möller, P., editors). Czech Geological Survey, Prague.Google Scholar
Kempe, U. and Dandar, S. (1995) Nb-Zr-REE mineralization: a possible source of HREE. Pp. 463466 in: Mineral Deposits: from their Origin to their Environmental impact. (Pašavá, J., Křibek, T. and Žák, K., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Kempe, U. and Goldstein, S. (1997) Eu anomalies, tetrad effect and HREE enrichment in fiuorites from Sn deposits: evidence for two sources mixing and phase separation. Journal of the Czech Geological Society, 42, 37.(abstract).Google Scholar
Kempe, U., Trinkler, M. and Wolf, D. (1991) Yttrium und die Seltenerdfotolumineszenz natürlicher Scheelite. Chemie der Erde, 51, 275289.Google Scholar
Kempe, U., Götze, J., Dandar, S. and Habermann, D. (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): Indications from a combined CL-SEM study. Mineralogical Magazine, 63, 165177.CrossRefGoogle Scholar
Kharlamov, Yu.S., Kudryavtseva, G.P., Garanin, V.K., Korenova, N.G., Moskalyuk, A.A., Sandomirskaya, S.M. and Shugurova, N.A. (1981) Origin of carbonatites of the Kovdor deposit. International Geology Review, 23, 865880.CrossRefGoogle Scholar
Knutson, C., Peacor, D.R. and Kelly, W.C. (1985) Luminescence, color and fission track zoning in apatite crystals of the Panasqueira tin-tungsten deposit, Beira-Baixa, Portugal. American Mineralogist, 70, 829837.Google Scholar
Kovalenko, V.I., Antipin, V.S., Vladykin, N.V., Smirnova, E.V. and Balashov, Yu.A. (1982) REE distribution coefficients for apatite and REE behaviour in magmatic environement. Geokhimiya, 2, 230243.(in Russian).Google Scholar
Kuznecov, G.V. and Tarashchan, A.N. (1975) Emission centres in natural apatite. Konstituciya i svojstva mineralov, 9, 120124.(in Russian).Google Scholar
Landa, E.A, Krasnova, N.I., Tarnovskaya, A.N. and Shergina, Yu.P. (1983) Distribution of rare earths and yttrium in apatite from ultrabasic and carbonatite intrusions and the origin of apatite mineralization. Geochemistry International, 20, 7787.Google Scholar
Lykhin, D.A., Kosticyn, Yu.A; Kovalenko, V.I., Yarmolyuk, V.V., Sal’nikova, E.B., Kotov, A.B., Kovach, V.P. and Ripp, G.S. (2001) Ore-forming magmatism of the Ermakovka Be deposit in Western Transbaikalia: age, source of magma and relation to mineralisation. Geologiya rudnykh mestorozhdenii, 43, 5270.(in Russian).Google Scholar
Marfunin, A.S. (1979) Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Mariano, A.N. (1988) Some further geological applications of cathodoluminescence. Pp. 94123 in: Cathodoluminescence of Geological Material. (Marshall, D.J., editor). Unwin Hyman, Boston, USA.Google Scholar
Mitchell, R.H., Xiong, X, Mariano, A.N. and Fleet, M.E. (1997) Rare-earth-element-activated cathodoluminescence in apatite. Canadian Mineralogist, 35, 979998.Google Scholar
Monecke, T., Bombach, G., Klemm, W., Kempe, U., Götze, J. and Wolf, D. (2000 a) Determination of trace elements in the quartz reference material UNS-SpS and in natural quartz samples by ICP-MS. Geostandards Newsletter, 24, 7381.CrossRefGoogle Scholar
Monecke, T., Monecke, J., Mönch, W. and Kempe, U. (2000 b) Mathematical analysis of rare earth element patterns of fluorites from the Ehrenfriedersdorf tin deposit, Germany: evidence for a hydrothermal mixing process of lanthanides from two different sources. Mineralogy and Petrology, 70, 235256.CrossRefGoogle Scholar
Morozov, A.M., Morozova, L.G., Trefimov, A.K. and Feofilov, P.P. (1970) Spectral and luminescent characteristics of fluoroapatite single crystals activated by rare earth ions. Optika i Spektroskopia, 29, 590596.(in Russian).Google Scholar
Morozov, M., Trinkler, M., Plötze, M. and Kempe, U. (1996) Spectroscopic studies on fiuorite from Li-F and alkaline granitic systems in Central Kazakhstan. Pp. 359369 in: Granite-related Ore Deposits of Central Kazakhstan and Adjacent Area. (Shatov, V., Seltmann, R., Kremenetsky, A., Lehmann, B., Popov, V., and Ermolov, P., editors). Glagol Publishing House, St. Petersburg, Russia.Google Scholar
Murray, J.R. and Oreskes, N. (1997) Uses and limitations of cathodoluminescence in the study of apatite paragenesis. Economic Geology, 92, 368376.CrossRefGoogle Scholar
Nikitina, E.I., Sotnikov, V.I. and Shcherbakova, M.Y. (1966) Luminescing apatites from granites and greisens of the Mountain Altai. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 95, 589593.(in Russian).Google Scholar
Novikova, M.I., Shpanov, E.P. and Kupriyanova, I.I. (1994) Petrography of the Ermakovskoe beryllium ore deposit, Western Transbaikal region. Petrology, 2, 98109.Google Scholar
Ontoev, D.O., Luvsandanzan, B. and Gundsambuu, Ts. (1979) Geology and primary mineralisation of the Mushugai F-REE deposit (Mongolia). Geologiya Rudnykh Mestorozhdenij, 3, 2742.(in Russian).Google Scholar
Pan, Y. and Fleet, M.E. (1996) Rare earth element mobility during prograde granulite facies metamorphism: significance of fluorine. Contributions to Mineralogy and Petrology, 123, 251262.CrossRefGoogle Scholar
Perseil, E.-A, Blanc, P. and Ohnenstetter, D. (2000) As-bearing fiuorapatite in manganiferous deposits from St. Marcel-Praborna, Val D’Aosta, Italy. Canadian Mineralogist, 38, 101117.CrossRefGoogle Scholar
Portnov, A.M. and Gorobets, B.S. (1969) Luminescence of apatite from different rock types. Doklady Akademia Nauk SSSR, 184, 110115.(in Russian).Google Scholar
Rae, D.A, Coulson, I.M. and Chambers, A.D. (1996) Metasomatism in the North Qôroq centre, South Greenland: apatite chemistry and rare-earth element transport. Mineralogical Magazine, 60, 207220.CrossRefGoogle Scholar
Raimbault, L. (1988) The recording of fluid phases through REE contents in hydrothermal minerals. A case study: apatites from the Meymac tungsten district (French Massif Central). Pp. 151159 in: Mineral Deposits within the European Communit. (Boissonnas, J. and Omenetto, P., editors). Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
Rakovan, J. and Reeder, R. (1996) Intracrystalline rare earth element distributions in apatite: Surface structural influences on incorporation during growth. Geochimica et Cosmochimica Acta, 60, 44354445.CrossRefGoogle Scholar
René, M. (1998) Development of topaz-bearing granites of the Krundum massif (Karlovy Vary pluton). Acta Universitatis Carolinae, 42, 103109.Google Scholar
Rieser, U, Krbetschek, M.R. and Stolz, W. (1994) CCD-camera based high sensitivity TL/OSL-spectrometer. Radiation Measurement, 23, 523528.CrossRefGoogle Scholar
Roeder, P.L., MacArthur, D., Ma, X.-P., Palmer, G.R. and Mariano, A.N. (1987) Cathodoluminescence and microprobe study of rare-earth elements in apatite. American Mineralogist, 72, 801811.Google Scholar
Rłnsbo, J.G. (1989) Coupled substitution involving REEs and Na and Si in alkaline rocks from the Ilimaussaq intrusion, South Greenland and the petrological implications. American Mineralogist, 74, 896901.Google Scholar
Rundqvist, I.K, Baskina, V.A. and Ontoev, D.O. (1995) Mushugay-Khuduk REE-Fe-F deposit in Southern Mongolia. Global Tectonics and Metallogeny, 5, 4151.CrossRefGoogle Scholar
Seifert, Th. and Kempe, U. (1994) Sn-W-Lagerstätten und spätvariszische Magmatite des Erzgebirges. European Journal of Mineralogy, 6, Beiheft 2, 125172.Google Scholar
Seifert, W., Kämpf, H. and Wasternack, J. (2000) Compositional variations in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: implications for cooling history of carbonatites. Lithos, 53, 81100.CrossRefGoogle Scholar
Seltmann, R., Schneider, Th. and Lehmann, B. (1995) The rare-metal granite-pegmatite system of Ehrenfriedersdorf/Erzgebirge: Fractionation and magmatic-hydrothermal transition processes. Pp. 521524 in: Mineral Deposits: from their Origin to their Environmental Impact. (Paavá, J., Kłibek, B. and Žák, K., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Trinkler, M. and Martin, M. (1998) Zur Mineralogie und Genese des “Stockscheiders” von Ehrenfriedersdorf. Zeitschrift für geologische Wissenschaften, 26, 293314.Google Scholar
Vasil’eva, Z.V., Volchanskaya, I.K., Ontoev, D.O., Borisovskij, S.E., and Yakovlevskaya, T.Ya.. (1978) On REE-rich zoned apatite from Southern Mongolia. Izvestiya AN SSSR, ser. geol., 2, 143148 (in Russian).Google Scholar
Wenzel, T. and Ramseyer, K. (1992) Mineralogical and mineral-chemical changes in a fractionation-dominated diorite-monzodiorite-monzonite sequence: evidence from cathodoluminescence. European Journal of Mineralogy, 4, 13911399.CrossRefGoogle Scholar
Whitney, P.R. and Olmsted, J.F. (1998) Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA. Geochimica et Cosmochimica Acta, 62, 29652977.CrossRefGoogle Scholar
Zhang, S., , Wang, L. and Yang, W. (1985) Use of REE analysis in apatite to distinguish petrological and mineralogical series of granitic rocks. Geochimica, 1, 4557.Google Scholar