Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T06:33:17.869Z Has data issue: false hasContentIssue false

The crystal structure of dalnegroite, Tl5−xPb2x(As,Sb)21−xS34: a masterpiece of structural complexity

Published online by Cambridge University Press:  05 July 2018

L. Bindi*
Affiliation:
Museo di Storia Naturale, sezione di Mineralogia, Universitá degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy C.N.R. – Istituto di Geoscienze e Georisorse, sezione di Firenze, Via La Pira, 4, I-50121, Firenze, Italy
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Universitá degli Studi di Padova, Via Giotto 1, I-35137, Padova, Italy
A. Guastoni
Affiliation:
Dipartimento di Geoscienze, Universitá degli Studi di Padova, Via Giotto 1, I-35137, Padova, Italy
L. Secco
Affiliation:
Dipartimento di Geoscienze, Universitá degli Studi di Padova, Via Giotto 1, I-35137, Padova, Italy

Abstract

The crystal structure of the rare mineral dalnegroite, Tl5−xPb2x(As,Sb)21−xS34 with x ≈ 1, was determined for a crystal from Lengenbach, Binn Valley, Switzerland. The structure is triclinic, space group P1, with a = 16.218(3), b = 42.546(7), c = 8.558(1) Å , α = 95.70(4), β = 90.18(3), γ = 96.38(4)°, V = 5838.9(9) Å3, Z = 4. Refinement of an isotropic model led to an R1 index of 0.0536 for 22226 observed reflections and 980 parameters, and R1 = 0.0590 for all 25266 independent reflections. Although dalnegroite cannot be considered a layered compound, its structure can be usefully described as a regular alternation of two kinds of layers stacked along the b axis, with four layers in the unit cell: (1) a layer 7.8 Å thick, at y ≈ 0.15 and 0.65, can be considered as derived from the SnS archetype; (2) a layer 13.6 Å thick, at y ≈ 0.35 and 0.85, derived from the PbS archetype. Different chemical compositions, such as Tl:Pb and Sb:As ratios, for different samples belonging to the chabournéite-dalnegroite family could play a central role in controlling different degrees of order, leading to different superstructures.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balić-Žunić, T., Makovicky, E. and Moëlo, Y. (1995) Contributions to the crystal chemistry of thallium sulphosalts III. The crystal structure of lorandite (TlAsS2) and its relation to weissbergite (TlSbS2). Neues Jahrbuch für Mineralogie Abhandlungen, 168, 213235.Google Scholar
Baur, W.H. and Tillmanns, E. (1986) How to avoid unnecessarily low symmetry in crystal structure determinations. Ada Crystallographica B, 42, 95111.Google Scholar
Berlepsch, P., Armbruster, T. and Topa, D. (2002) Structural and chemical variations in rathite, Pb8Pb4-x(Tl2As2)x(Ag2As2)As16S40: modulations of a parent structure. Zeitschrift fir Kristallographie, 217, 581590.Google Scholar
Bonaccorsi, E., Biagioni, C., Moelo, Y. and Orlandi, P. (2010) Chabourneite from Monte Arsiccio mine (Apuan Alps, Tuscany, Italy): occurrence and crystal structure. IMA General Meeting, Budapest, August 21—27, 2010. Ada Mineralogica-Petrographica Abstrad Series, 6, 714.Google Scholar
Capelli, S.C., Förtsch, M. and Bürgi, H.B. (2000) Dynamics of molecules in crystals from multi-temperature anisotropic displacement parameters. II. Application to benzene (C6D6) and urea [OC(NH)2]. Ada Crystallographica A, 56, 413424.Google Scholar
Divjakovic, V. and Nowacki, W. (1976) Die kristall-struktur von Imhofit, Tl5.6As15S25.3. Zeitschrift fir Kristallographie, 144, 323333.CrossRefGoogle Scholar
Du Boulay, D., Ishizawa, N., Atake, T., Streltsov, V., Furuya, K. and Munakata, F. (2004) Synchrotron X-ray and ab initio studies of β-Si3N4. Ada Crystallographica B, 60, 388405.Google Scholar
Edenharter, A., Nowacki, W. and Takeuchi, Y. (1970) Verfeinerung der kristallstruktur von bournonit und von seligmannit . Zeitschrift fur Kristallographie, 131, 397417.CrossRefGoogle Scholar
Engel, P. and Nowacki, W. (1969) Die kristallstruktur von baumhauerit. Zeitschrift fur Kristallographie, 129, 178202.CrossRefGoogle Scholar
Flack, H.D., Bernardinelli, G., Clemente, D.A., Lindenc, A. and Spek, A.L. (2006) Centrosymmetric and pseudo-centrosymmetric structures refined as non- centrosymmetric. Ada Crystallographica B, 62, 695701.Google Scholar
Fleet, M.E. (1973) The crystal structure and bonding of lorandite, Tl2AS2S4. Zeitschrift fur Kristallographie, 138, 147160.CrossRefGoogle Scholar
Friese, K., Panthofer, M., Wu, G. and Jansen, M. (2004) Strategies for the structure determination of endohe-dral fullerenes applied to the example of Ba@C74 × Co(octaethylporphyrin) × 2C6H6. Ada Crystallographica B, 60, 520527.Google Scholar
Hamilton, W.C. (1965) Significance tests on the crystallographic R factors. Ada Crystallographica B, 18, 502510.CrossRefGoogle Scholar
Johan, Z., Mantienne, J. and Picot, P. (1981) La chabourncéite, un nouveau minéral thallifere. Bulletin de Minéralogie, 104, 1015.CrossRefGoogle Scholar
Laufek, F., Pažout, R. and Makovicky, E. (2007) Crystal structure of owyheeite Ag1.50Pb4.43Sb6.07S17: refinement from powder synchrotron X-ray diffraction. European Journal of Mineralogy, 19, 557566.CrossRefGoogle Scholar
Makovicky, E. (1993) Rod-based sulphosalt structures derived from the SnS and PbS archetypes. European Journal of Mineralogy, 5, 545591.CrossRefGoogle Scholar
Marsh, R.E. (1981) The importance of weak reflections in resolving the centrosymmetric-noncentrosym-metric ambiguity: a cautionary tale. Ada Crystallographica B, 37, 19851988.CrossRefGoogle Scholar
Marsh, R.E. (1986) Centrosymmetric or noncentrosym-mstxicl Ada Crystallographica, B42, 193-198.CrossRefGoogle Scholar
Marsh, R.E. (1994) The centrosymmetric — noncen-trosymmetric ambiguity: some more examples. Ada Crystallographica, A50, 450-455.Google Scholar
Marsh, R.E. (1995) Some thoughts on choosing the correct space group. Ada Crystallographica, B51, 897-907.CrossRefGoogle Scholar
Marumo, F. and Nowacki, W. (1967) The crystal structure of hatchite, PbTlAgAs2S5. Zeitschrift fur Kristallographie, 125, 249265.CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Commission on Ore Mineralogy of the International Mineralogical Association: Report of the Sulphosalt Subcommittee. European Journal of Mineralogy, 20, 746.CrossRefGoogle Scholar
Müller, P., Herbst-Irmer, R., Spek, A.L., Schneider, T.R. and Sawaya, M.R. (2006) Crystal structure refinement, a crystallographer 's guide to SHELXL. Oxford University Press (for IUCr), London, 213 pp.CrossRefGoogle Scholar
Nagl, A. (1979) The crystal structure of a thallium sulphosalt, Tl8Pb4Sb21As19S68. Zeitschrift fur Kristallographie, 150, 85106.CrossRefGoogle Scholar
Nestola, F., Guastoni, A., Bindi, L. and Secco, L. (2010) Dalnegroite, Tl5-xPb2x(As,Sb)21-xS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Canton Valais, Switzerland. Mineralogical Magazine, 73, 10271032.CrossRefGoogle Scholar
Ohmasa, M. and Nowacki, W. (1971) The crystal structure of vrbaite, Hg3Tl4As8Sb2S20. Zeitschrift fur Kristallographie, 134, 360380.Google Scholar
Oxford Diffraction (2006). CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.Google Scholar
Oszlányi, G. and Süto, A. (2008) The charge flipping algorithm. Ada Crystallographica, 64, 123134.Google Scholar
Petříček, V., Dusek, M. and Palatinus, L. (2006) JANA2006, Structure Determination Software Programs. Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.Google Scholar
Portheine, J.C. and Nowacki, W. (1975) Refinement of the crystal structure of zinckenite, Pb6Sb14S27. Zeitschrift fur Kristallographie, 141, 7996.CrossRefGoogle Scholar
Ribar, B., Nicca, C. and Nowacki, W. (1969) Dreidimensionale verfeinerung der kristallstruktur von dufrenoysit, Pb8As8S20. Zeitschrift fur Kristallographie, 130, 1540.CrossRefGoogle Scholar
Spek, A.L. (2003) Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 713.CrossRefGoogle Scholar
Topa, D. and Makovicky, E. (2010) The crystal chemistry of eosalite based on new electron-micro-probe data and single-crystal determination of the structure. The Canadian Mineralogist, 48, 10811107.CrossRefGoogle Scholar
Supplementary material: File

Bindi et al. supplementary material

Structure factors

Download Bindi et al. supplementary material(File)
File 783.6 KB