Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T05:51:17.570Z Has data issue: false hasContentIssue false

Crystallographic parameterisation of distortions in the SOD framework in the sodalite and helvine groups: An analysis in condensed normal modes of an aristotype phase

Published online by Cambridge University Press:  13 January 2022

Kevin S. Knight*
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, SheffieldS1 3JD, UK Department of Earth Sciences, The Natural History Museum, Cromwell Road, LondonSW15 5BD, UK
*
*Author for correspondence: Kevin Knight, Email: kevinstevenknight@gmail.com

Abstract

Crystallographic distortions in the alternating aluminium and silicon tetrahedral framework of sodalite (Na8Al6Si6O24Cl2), and beryllium and silicon in helvine (Mn8Be6Si6O24S2), (framework designated SOD) are described in terms of a set of condensed normal mode amplitudes and phases derived from an ideal tetrahedron of a theoretical aristotype phase. For a sodalite-structured hettotype phase in space group $P{\overline 4} 3n$, these normal modes transform as the irreducible representations A1, E(α) and T1(z) of point-group ${\overline 4} 3m$, where to a good approximation A1 acts as a pure breathing mode, E(α) as a polyhedral distortive mode and T1(z) as a rigid unit rotation about the unique ${\overline 4}$ axis of the T-site under consideration. Parameterisation of the mode amplitudes in terms of low-order polynomials as a function of thermodynamic variable permits the crystal structure of sodalite-structured phases to be accurately interpolated at intermediate values of the thermodynamic variable. Published data for the high-temperature behaviour of sodalite have been re-analysed in terms of mode amplitudes which accurately reproduce the temperature dependence of the bond lengths, bond angles and the Al–O–Si inter-polyhedral angle. Full expressions for these derived structural parameters in terms of mode amplitudes and the lattice parameter are tabulated and agree with experimental results to within one estimated standard deviation of the experimental parameter. The potential for mode decomposition in lower symmetry SOD framework crystal structures is illustrated by deriving an aristotype structure for tugtupite (Na8Al2Be2Si8O24Cl2) at room temperature in space group $I{\overline 4}$.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Koichi Momma

References

Antao, S.M. (2021) Linear structural trends and multi-phase intergrowths in helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. Minerals, 11, 325346.CrossRefGoogle Scholar
Antao, S.M., Hassan, I and Parise, J.B. (2003) The structure of danalite at high temperature obtained from synchrotron radiation and Rietveld refinement. The Canadian Mineralogist, 41, 14131422.CrossRefGoogle Scholar
Antao, S.M., Hassan, I. and Parise, J.B. (2004a) Chromate aluminate sodalite Ca8[Al12O24](CrO4)2: Phase transitions and high-temperature structural evolution of the cubic phase. The Canadian Mineralogist, 42, 10471056.CrossRefGoogle Scholar
Antao, S.M., Hassan, I. and Parise, J.B. (2004b) Tugtupite: High temperature structures obtained from in situ synchrotron diffraction and Rietveld refinement. American Mineralogist, 89, 492497.CrossRefGoogle Scholar
Arai, J. and Smith, S.R.P. (1981) The Raman spectrum and analysis of phonon modes in sodalite. Journal of Physics C: Solid State Physics, 14, 11931202.CrossRefGoogle Scholar
Aroyo, M.I., Kirov, A., Capillas, C., Perez-Mato, J.M. and Wondratschek, H. (2006) Bilbao Crystallographic Server II: Representations of crystallographic point-groups and space groups. Acta Crystallographica, A62, 115128.CrossRefGoogle Scholar
Bärnighausen, H. (1975) Group-subgroup relationships between space groups as an ordering principle in crystal-chemistry – Family tree of perovskite-like structures. Acta Crystallographica, A31, S3.Google Scholar
Barth, T.H.F. (1926) Die kristallographische Beziehung zwischen Helvin und Sodalit. Norsk Geologisk Tidsskrift, 9, 4042.Google Scholar
Beagley, B., Henderson, C.M.B. and Taylor, D. (1982) The crystal structures of aluminosilicate-sodalites: X-ray diffraction studies and computer modelling. Mineralogical Magazine, 46, 459464.CrossRefGoogle Scholar
Bishop, D.M. (1972) Group Theory and Chemistry. Clarendon Press, Oxford, UK, 300p.Google Scholar
Bradley, C.J. and Cracknell, A.P. (1972) The Mathematical Theory of Symmetry in Solids. Clarendon Press, Oxford, UK, 745 p.Google Scholar
Brown, I.D. (2002) IUCr Monographs on Crystallography 12. The Chemical Bond in Inorganic Chemistry. International Union of Crystallography, Oxford, UK, 278 pp.Google Scholar
Buerger, M.J. (1947) Derivative crystal structures. Journal of Chemical Physics, 15, 116.CrossRefGoogle Scholar
Buerger, M.J. (1961) Polymorphism and phase transitions. Fortschritte der Mineralogie, Kristallographie und Petrologie, 39, 924.Google Scholar
Decius, J.C. and Hexter, R.M. (1977) Molecular Vibrations in Crystals. McGraw-Hill, New York, 391 pp.Google Scholar
Deer, W.A., Howie, R.A., Wise, W.S. and Zussman, J. (2004) Rock Forming Minerals, Volume 4B, Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites. The Geological Society, London, 982 pp.Google Scholar
Dempsey, M.J. and Taylor, D. (1980) Distance least squares modelling of the cubic sodalite structure and of the thermal expansion of Na8(Al6Si6O24)I2. Physics and Chemistry of Minerals, 6, 197208.CrossRefGoogle Scholar
Dove, M.T., Pryde, A.K.A., Heine, V. and Hammonds, K.D. (2007) Exotic distributions of rigid unit modes in the reciprocal spaces of framework aluminosilicates. Journal of Physics: Condensed Matter, 19, 275209.Google Scholar
El-Betanouny, M. and Wooten, F. (2008) Symmetry and Condensed Matter Physics. Cambridge University Press, Cambridge, UK, 922 pp.CrossRefGoogle Scholar
Fischer, R.X. and Bauer, W.H. (2009) Symmetry relationships of sodalite (SOD) – type crystal structures. Zeitschrift für Kristallographie, 224, 185197.CrossRefGoogle Scholar
Gottfried, C. (1927) Die Raumgruppe des Helvins. Zeitschrift für Kristallographie, 65, 425427.CrossRefGoogle Scholar
Hahn, G.J. (1977) The hazards of extrapolation in regression analysis. Journal of Quality Technology, 9, 159165.CrossRefGoogle Scholar
Hammonds, K.D., Dove, M.T., Giddy, A.P., Heine, V. and Winkler, B. (1996) Rigid-unit phonon modes and structural phase transitions in framework silicates. American Mineralogist, 81, 10571079.CrossRefGoogle Scholar
Hassan, I and Grundy, H.D. (1984) The crystal structure of sodalite-group minerals. Acta Crystallographica, B40, 613.CrossRefGoogle Scholar
Hassan, I and Grundy, H.D. (1985) The crystal structures of the helvite-group minerals, (Mn,Fe,Zn)8[Be6Si6O24]S2. American Mineralogist, 70, 186192.Google Scholar
Hassan, I., Antao, S.M. and Parise, J.B. (2004) Sodalite: High-temperature structures obtained from synchrotron radiation and Rietveld refinements. American Mineralogist, 89, 359364.CrossRefGoogle Scholar
Howard, C.J. and Stokes, H.T. (2004) Structures and phase transitions in perovskites: a group-theoretical approach. Acta Crystallographica, A61, 93111.Google Scholar
Jaeger, F.M. (1929) On the constitution and structure of ultramarine. Transactions of the Faraday Society, 25, 320345.CrossRefGoogle Scholar
Jaeger, F.M., Westenbrin, H.G.K. and van Mellf, F.A. (1927) Roentgenspectrographic investigations on the structure of the artificial ultramarines and the problem concerning their relations to the minerals hauyne nosean sodalite lazurite and nephelite. Proceedings of the Koninklijke Akademie van Wetenschappen te Amsterdam, 30, 249267.Google Scholar
King, R.S.P., Dann, S.E., Elsegood, M.R.J., Kelly, P.F. and Mortimer, R.J. (2009) The synthesis, full characterisation and utilisation of template-free silica sodalite, a novel polymorph of silica. Chemistry, A European Journal, 15, 54415443.CrossRefGoogle ScholarPubMed
Knight, K.S. (2019) Parameterization of the crystal structure of garnet in terms of symmetry-adapted basis-vectors of the ideal tetrahedron and octahedron: Application to the pressure-dependence of the crystal structure of Y3Al5O12 between 0 and 126 GPa. Materials Chemistry and Physics, 227, 7282.CrossRefGoogle Scholar
Knight, K.S. and Henderson, C.M.B. (2019) Defining an aristotype crystal structure and crystallographic distortions in leucite/pollucite-structured phases with space group $Ia{\overline 3} d$. Physics and Chemistry of Minerals, 46, 595605.CrossRefGoogle Scholar
Kudoh, Y. and Takéuchi, Y. (1985) The effect of pressure on helvite Mn8S2[Be6Si6O24]. Zeitschrift für Kristallographie, 173, 305312.CrossRefGoogle Scholar
Ladd, M. (2014) Symmetry of Crystals and Molecules. Oxford University Press, Oxford, UK, 464 pp.CrossRefGoogle Scholar
Lang, A.R. (1965) Mapping Dauphiné and Brazil twins in quartz using X-ray topography. Applied Physics Letters, 7, 168170.CrossRefGoogle Scholar
Loewenstein, W. (1954) The distribution of aluminium in the tetrahedra of silicates and aluminates. American Mineralogist, 39, 9296.Google Scholar
Löns, J. and Schulz, H. (1967) Strukturverfeinerung von Sodalith, Na8Si6Al6O24Cl2. Acta Crystallographica, B52, 616627.Google Scholar
McMullan, R.K., Ghose, S., Haga, N. and Schomaker, V. (1996) Sodalite, Na4Si3Al3O12Cl: Structure and ionic mobility at high temperatures by neutron diffraction. Acta Crystallographica, B52, 616627.CrossRefGoogle Scholar
Megaw, H.D. (1973) Crystal Structures. A Working Approach. Saunders, London, 563p.Google Scholar
Meier, W.M. and Villiger, H. (1969) Die Methode der Abstandverfeinerung zur Bestimmung der Atomkoordinaten idealisierter Gerüststrukturen. Zeitschrift für Kristallographie, 129, 411423.CrossRefGoogle Scholar
Müller, U. (2013) IUCr Texts on Crystallography 18. Symmetry Relationships Between Crystal Structures. Applications of Crystallographic Group Theory in Crystal Chemistry, International Union of Crystallography, Oxford, 332 p.CrossRefGoogle Scholar
O'Keeffe, M. and Hyde, B.G. (1996) Mineralogical Society of America Monograph, Crystal Structures I. Patterns and Symmetry, Mineralogical Society of America, Washington DC, 453 pp.Google Scholar
Pauling, L. (1930) XXII. The structure of sodalite and helvite. Zeitschrift für Kristallographie, 74, 213225.CrossRefGoogle Scholar
Poole, D. (2014) Linear Algebra: A Modern Introduction. Cengage Learning, Kentucky, USA, 720 pp.Google Scholar
Richardson, J.W., Pluth, J.J., Smith, J.V., Dytrych, W.J. and Bibby, D.M. (1988) Conformation of ethylene glycol and phase change in silica sodalite. Journal of Physical Chemistry, 92, 243247.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedral. Science, 172, 567570.CrossRefGoogle Scholar
Sahl, K. (1980) Refinement of the crystal structure of bicchulite Ca2[Al2SiO6](OH)2. Zeitschrift für Kristallographie, 152, 1321.CrossRefGoogle Scholar
Smith, J.V. (1982) Geometrical and Structural Crystallography, John Wiley & Sons, New York, 450 pp.Google Scholar
Stein, A., Ozin, G.A., Macdonald, P.M., Stucky, G.D. and Jelinek, R. (1992) Silver, sodium halosodalites: Class A sodalites. Journal of the American Chemical Society, 114, 51715186.CrossRefGoogle Scholar
Stokes, H.T. and Hatch, D.M. (1988) Isotropy Subgroups of the 230 Crystallographic Space Groups. World Scientific, Singapore, 624 pp.Google Scholar
Taylor, D. (1968) The thermal expansion of the sodalite group of minerals. Mineralogical Magazine, 36, 761769.CrossRefGoogle Scholar
Taylor, D. (1972) The thermal expansion behaviour of the framework silicates. Mineralogical Magazine, 38, 593604.CrossRefGoogle Scholar
Taylor, D. (1975) Cell parameter correlations in the aluminosilicate-sodalites. Contributions to Mineralogy and Petrology, 51, 3947.CrossRefGoogle Scholar
Taylor, D. (1983) The structural behaviour of tetrahedral framework compounds – a review. Part I. Structural behaviour, Mineralogical Magazine, 47, 319326.CrossRefGoogle Scholar
Taylor, D. (1984) The structural behaviour of tetrahedral framework compounds – a review. Part II. Framework structures. Mineralogical Magazine, 48, 6579.CrossRefGoogle Scholar
Taylor, D. and Henderson, C.M.B. (1978) A computer model for the cubic sodalite structure. Physics and Chemistry of Minerals, 2, 325336.CrossRefGoogle Scholar