Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T08:45:30.529Z Has data issue: false hasContentIssue false

Discussion of the paper by Galuskin and Galuskina (2003), “Evidence of the anthropogenic origin of the ‘Carmel sapphire’ with enigmatic super-reduced minerals”

Published online by Cambridge University Press:  24 May 2023

William L. Griffin*
Affiliation:
ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, School of Natural Sciences, Macquarie University, NSW 2109, Australia
Vered Toledo
Affiliation:
Independent Researcher, Netanya 4210602, Israel, Email: vered.toledo1@gmail.com
Suzanne Y. O'Reilly
Affiliation:
ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, School of Natural Sciences, Macquarie University, NSW 2109, Australia
*
Corresponding author: William L. Griffin; Email: bill.griffin@mq.edu.au

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Comment
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Principal Editor: Roger Mitchell

References

Ballhaus, C., Helmy, H.M., Fonseca, R.O.C., Wirth, R., Schreiber, A. and Jöns, N. (2021) Ultra-reduced phases in ophiolites cannot come from the Earth's mantle. American Mineralogist, 106, 10531063.CrossRefGoogle Scholar
Ballhaus, C., Wirth, R., Fonseca, R.O.C., Blanchard, H., Pröll, W., Bragagni, A., Nagel, T, Schreiber, A., Dittrich, S., Thome, V. et al. (2017) Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochemical Perspectives Letters, 5, 4246.CrossRefGoogle Scholar
Fukai, Y. (2005) The Metal-Hydrogen system. Basic Bulk Properties. Springer-Verlag Berlin, 505 pp.CrossRefGoogle Scholar
Galuskin, E. and Galuskina, I. (2023) Evidence of the anthropogenic origin of the “Carmel sapphire” with enigmatic super-reduced minerals. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.25Google Scholar
Griffin, W.L., Gain, S.E.M., Adams, D.T., Huang, J-X., Saunders, M., Toledo, V., Pearson, N.J. and O'Reilly, S.Y. (2016) First terrestrial occurrence of tistarite (Ti2O3): Ultra-low oxygen fugacity in the upper mantle beneath Mount Carmel, Israel. Geology, 44, 815818, https://doi.org/10.1130/G37910.1.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Bindi, L., Toledo, V., Camara, F., Saunders, M. and O'Reilly, S.Y. (2018a) Carmeltazite, ZrAl2Ti4O11, a new mineral trapped in corundum from volcanic rocks of Mt Carmel, northern Israel. Minerals, 8, 601612.CrossRefGoogle Scholar
Griffin, W.L., Huang, J-X., Thomassot, E., Gain, S.E.M., Toledo, V. and O'Reilly, S.Y. (2018b) Super-reducing conditions in ancient and modern volcanic systems: Sources and behaviour of carbon-rich fluids in the lithospheric mantle. Mineralogy and Petrology, 112, Supplement 1, 101114.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Huang, J-X., Saunders, M., Shaw, J., Toledo, V. and O'Reilly, S.Y. (2019a) A terrestrial magmatic hibonite-grossite-vanadium assemblage: desilication and extreme reduction in a volcanic plumbing system, Mt Carmel, Israel. American Mineralogist, 104, 207217.CrossRefGoogle Scholar
Griffin, W.L., Toledo, V. and O'Reilly, S.Y. (2019b) Discussion of “Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. Lithos, 348–349, 105122.Google Scholar
Griffin, W.L., Gain, S.E.M., Camara, F., Bindi, L., Shaw, J., Alard, O. Saunders, M., Huang, J-X., Toledo, V. and O'Reilly, S.Y. (2020a) Extreme reduction: mantle-derived oxide xenoliths from a hydrogen-rich environment. Lithos, 358–359, 105404.Google Scholar
Griffin, W.L., Gain, S.E.M., Saunders, M., Bindi, L., Alard, O., Toledo, V. and O'Reilly, S.Y. (2020b) Parageneses of TiB2 in corundum xenoliths from Mt Carmel, Israel: Siderophile behaviour of boron under reducing conditions. American Mineralogist, 105, 16091621.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Saunders, M., Alard, O., Shaw, J., Toledo, V. and O'Reilly, S.Y. (2021a) Nitrogen under super-reducing conditions: Ti oxynitride melts in xenolithic corundum aggregates from Mt Carmel (N. Israel). Minerals, 11, 780.Google Scholar
Griffin, W.L., Gain, S.E.M., Saunders, M., Cámara, F., Bindi, L., Spartà, D., Toledo, V. and O'Reilly, S.Y. (2021b) Cr2O3 in Corundum: ultra-high contents under reducing conditions. American Mineralogist, 106, 14201437.CrossRefGoogle Scholar
Griffin, W.L., Gain, S.E.M., Saunders, M., Huang, J-X., Alard, O., Toledo, V. and O'Reilly, S.Y. (2022) Immiscible metallic melts in the upper mantle beneath Mount Carmel, Israel: Silicides, phosphides and carbides. American Mineralogist, 107, 532549.CrossRefGoogle Scholar
Huang, J-X., Xiong, Q., Gain, S.E.M., Griffin, W.L., Murphy, T.D., Siryaev, A.A., Li, L., Toledo, V., Tomshin, M.D. and O'Reilly, S.Y. (2020) Immiscible metallic melts in the deep Earth: Clues from moissanite (SiC) in volcanic rocks. Science Bulletin, 65, 14791488.CrossRefGoogle ScholarPubMed
Litasov, K.D., Kagi, H. and Bekker, T.B. (2019a) Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos, 340–341, 181190.CrossRefGoogle Scholar
Litasov, K.D., Bekker, T.B. and Kagi, H. (2019b) Reply to the discussion of “Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. (Lithos, 340–341, p.181–190) by W.L. Griffin, V. Toledo and S.Y. O'Reilly. Lithos, 348–349, 105170.Google Scholar
Litasov, K.D., Kagi, H., Voropaev, S.A., Hirata, T., Ohfuji, H., Ishibashi, H., Makino, Y., Bekker, T.B., Sevastyanov, V.S., Afanasiev, V.P. and Pokhilenko, N.P. (2019c) Comparison of enigmatic diamonds from the Tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials. Gondwana Research, 75, 1627.CrossRefGoogle Scholar
Oliveira, B.B., Griffin, W.L., Gain, S.E.M., Saunders, M., Shaw, J., Toledo, V. Afonso, J.C. and O'Reilly, S.Y. (2021) Ti3+ in corundum: tracing crystal growth in a highly reduced magma. Scientific Reports, 11, 2439.CrossRefGoogle Scholar
O'Reilly, S.Y. and Griffin, W.L. (2010) Rates of magma ascent: Constraints from mantle-derived xenoliths. Pp. 116124 in: Timescales of Magmatic Processes: From Core to Atmosphere (Dosetto, A., Turner, S. and Van Orman, J.A., editors). Blackwell Publishing Ltd., Hoboken, New Jersey, USA.CrossRefGoogle Scholar
Pack, A. (2021) Isotopic traces of atmospheric O2 in rocks, minerals and melts. Pp. 217240 in: Triple Oxygen Isotope Geochemistry (Bindeman, I.N. and Pack, A., editors). Reviews in Mineralogy and Geochemistry, 86. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Roup, A., Kamanovitch, E., Baykov, Y and Toledo, V. (2009) Moissanite discovery by Shefa Yamin. Geological Society of Israel Annual Meeting, Abstract, p. 111.Google Scholar
Weitzer, F., Schuster, J., Naka, M., Stein, F. and Palm, M. (2008) On the reaction scheme and liquidus surface in the ternary system Fe-Si-Ti. Intermetallics, 16, 273282.CrossRefGoogle Scholar
Xiong, Q., Griffin, W.L., Huang, J-X., Gain, S.E.M., Toledo, V., Pearson, N.J. and O'Reilly, S.Y. (2017) Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from Mt Carmel. European Journal of Mineralogy, 29, 557570.CrossRefGoogle Scholar