Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-15T21:18:03.351Z Has data issue: false hasContentIssue false

Eclogite facies relics in metabasites from the Sierra de Guadarrama (Spanish Central System): P-T estimations and implications for the Hercynian evolution

Published online by Cambridge University Press:  05 July 2018

L. Barbero*
Affiliation:
Departamento de Geología, Facultad C. C. del Mar, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
C. Villaseca
Affiliation:
Departamento de Petrología y Geoquímica, Facultad C. C. Geológicas, Universidad Complutense, 28040 Madrid, Spain

Abstract

Relics of HP-MT eclogitic assemblages related to the first metamorphic stage of the Hercynian orogeny in the Sierra de Guadarrama (Spanish Central System, SCS) are preserved as boudins of pre-Ordovician metabasites enclosed by felsic gneisses. Textures indicate a multi-stage metamorphic history starting in the MT eclogite facies (as deduced from the presence of omphacite and rutile included in garnet) and continuing through medium to low pressure granulite and retrograde amphibolite-greenschist facies. Thermobarometric calculations in the eclogitic paragenesis yield pressures of ∼14 kbar for temperatures in the range 725-775°C. Thermobarometry for the subsequent granulitic stage indicates a significant drop in pressure (P < 10 kbar) for similar temperatures of ∼750°C. Metabasites vary from gabbro to leucotonalites showing the typical Fe enrichment of the tholeiitic series. Chemical characteristics indicate a derivation from low-pressure crystallization of tholeiitic melts more enriched than typical MORB compositions. Their original location far from continental margins as evidenced by the absence of ophiolitic material in the area and their association with platform sediments suggests that eclogitization was related to intracontinental crustal subduction and thickening. The P-T conditions estimated in the metabasites for the first metamorphic stage are similar to ones deduced for the surrounding metasediments and suggest that the Hercynian crust could have reached a thickness of ∼70–80 km, which is more than the double the present thickness.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arenas, R, Fúster, J.M., González Lodeiro, F., Macaya, J., Martín-Parra, L.M., Martínez-Catalán, J.R. and Villaseca, C. (1991) Evolución metamórfica de la región de Segovia (Sierra de Guadarrama). Geogaceta, 4, 195201.Google Scholar
Barbero, L. (1995) Granulite facies metamorphism in the Anatectic Complex of Toledo, Spain: late Hercynian tectonic evolution by crustal extension. J. Geol. Soc., 152, 365–82.CrossRefGoogle Scholar
Berman, R.G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O- CaO-MgO-FeO-Fe2O3-SiO2-TiO2-H2O-CO2 . J. Petrol., 29, 445522.CrossRefGoogle Scholar
Berman, R.G. (1990) Mixing properties of Ca-Mg-Fe- Mn garnets. Amer. Mineral., 75, 328–44.Google Scholar
Berman, R.G. (1991) Thermobarometry using multi-equilibrium calculations: a new technique with petrological applications. Canad. Mineral., 29, 833–55.Google Scholar
Blundy, J.D. and Holland, T.J.B. (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib. Mineral. Petrol., 104, 208–24.CrossRefGoogle Scholar
Bouchardon, J.-L., Santallier, D., Briand, D., Ménot, R.-P. and Piboule, M. (1989) Eclogites in the French Paleozoic Orogen: geodynamic significance. Tectonophysics, 169, 317–32.CrossRefGoogle Scholar
Carswell, D.A. and Cuthbert, S.J. (1986) Eclogite facies metamorphism in the lower continental crust. Pp. 193209 in: The Nature of the Lower Continental Crust (Dawson, J.B. Carswell, D.A., Hall, J. and Wedepohl, K.H., editors). Spec. Publ., 24. Geological Society, London.Google Scholar
Coleman, R.G, Lee, D.E., Beatty, L.B. and Brannock, W.W. (1965) Eclogites and eclogites: their differences and similarities. Geol. Soc. Amer. Bull., 76, 483508.CrossRefGoogle Scholar
Ellis, D.J. and Green, D.H. (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., 71, 1322.CrossRefGoogle Scholar
England, P.C. and Thompson, A.B. (1984) Pressure-temperature- time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol., 25, 894928.CrossRefGoogle Scholar
Escuder Viruete, J., Hernáiz, P.P., Valverde-Vaquero, P., Rodriguez Fernández, R. and Dunning, G. (1998) Variscan syncollisional extension in the Iberian Massif: structural, metamorphic and geochronological evidence from the Somosierra sector of the Sierra de Guadarrama (Central Iberian Zone, Spain). Tectonophysics, 290, 87109.CrossRefGoogle Scholar
Evensen, N.M., Hamilton, P.J. and O’Nions, R.K. (1978) Rare earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta, 42, 1199–212.CrossRefGoogle Scholar
Fuhrman, M.L. and Lindsley, D.H., (1988) Ternary-feldspar modelling and thermometry. Amer. Mineral, 73, 201–15.Google Scholar
Gasparik, T. and Lindsley, D. (1980) Phase equilibria at high pressure of pyroxenes containing monovalent and trivalent ions. Pp. 309–99 in: Pyroxenes (Prewitt, Ch.T., editor). Reviews in Mineralogy, 7. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Govindaraju, K. and Mevelle, G. (1987) Fully automated dissolution and separation methods for the inductively coupled plasma atomic emision spectrometry rock analysis – Application to the determination of rare-earth elements. J. Anal. Atom. Spectr., 2, 615–21.CrossRefGoogle Scholar
Graham, C.M. and Powell, R. (1984) A garnet-hornblende geothermometer: calibration, testing and application to the Pelona Schist, Southern California. J. Metam. Geol., 2, 1331.CrossRefGoogle Scholar
Gutiérrez Marco, J.C., San José, M.A. and Pieren, A.P. (1990) Central Iberian Zone. Post-Cambrian Paleozoic stratigraphy. Pp. 160–71 in: Pre-Mesozoic Geology of Iberia (Dallmeyer, R.D. and Martínez García, E., editors). Springer Verlag, Berlin.Google Scholar
Harley, S.L. (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib. Mineral. Petrol., 86, 359–73.CrossRefGoogle Scholar
Hess, P.C. (1989) Origins of Igneous Rocks. Harvard University Press, Cambridge, MA.Google Scholar
Holdaway, M.J. (1971) Stability of andalusite and the aluminium silicate phase diagram. Amer. J. Sci., 27, 97132.CrossRefGoogle Scholar
Holland, T.J.B. (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Amer. Mineral, 65, 129–34.Google Scholar
Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Canad. J. Earth Sci., 8, 523–48.CrossRefGoogle Scholar
Jamieson, R.A., Culshaw, N.G. and Corrigan, D. (1995) North-west propagation fo the Grenville orogen: Grenvillian structure and metamorphism near Key Harbour, Georgian Bay, Ontario, Canada. J. Metam. Geol., 13, 185207.CrossRefGoogle Scholar
Kretz, R. (1983) Symbols for rock forming minerals. Amer. Mineral., 68, 277–9.Google Scholar
Krogh, E.J. (1988) The garnet-clinopyroxene Fe-Mg geothermometer – a reinterpretation of existing experimental data. Contrib. Mineral. Petrol., 99, 44–8.CrossRefGoogle Scholar
Laird, J. and Albee, A.L. (1981) Pressure-temperatures and time indicators in mafic schists: their application to reconstructing the polymetamorphic history of Vermont. Amer. J. Sci., 281, 127–75.CrossRefGoogle Scholar
Leake, B.E. and 20 others (1997) Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral. Mag., 61, 295321.CrossRefGoogle Scholar
Leal, N., Pedro, J., Moita, P., Fonseca, P., Araújo, A. and Munhá, J. (1996) Metamorfismo nos sectores meridionais da zona de Ossa-Morena: Actualizaçáo de conhecimentos. Estudios sobre a geologia da zona de Ossa-Morena (Maçigo Ibérico) Livro Homenagem ao Prof. Francisco Gonçalves, Évora, 119–32.Google Scholar
Macaya, J., González-Lodeiro, F., Martínez Catalán, J.R. and Álvarez, F. (1991) Continuous deformation, ductile thrusting and backfolding of cover and basement in the Sierra de Guadarrama, Hercynian orogen of central Spain. Tectonophysics, 191, 291309.CrossRefGoogle Scholar
Martínez Catalán, J.R., Arenas, R, Díaz García, F.J., Rubio Pascual, F.J., Abati, J. and Marquínez, J. (1996) Variscan exhumation of a subducted Paleozoic continental margin: The basal units of the Órdenes Complex, Galicia, NW Spain. Tectonics, 15, 106–21.CrossRefGoogle Scholar
Martín Romera, C., Villaseca, C. and Barbero, L. (1999) Materiales anatécticos en el área de Sotosalbos (Segovia, Sierra de Guadarrama). Caracterización petrológica, geoquímica e isotópica (Sr, Nd). Actas II Congreso Ibérico de Geoquimica, Lisboa, 329–32.Google Scholar
Medaris, G., Jelínek, E. and Mísar, Z. (1995) Czech eclogites: Terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif. Eur. J. Mineral., 7, 728.CrossRefGoogle Scholar
Messiga, B., Tribuzio, R. and Caucia, F. (1992) Amphibole evolution in Varican eclogite-amphibolite from the Savona crystalline massif (Western Ligurian Alps, Italy): Controls on the decompressional P-T-t path. Lithos, 27, 215–30.CrossRefGoogle Scholar
Mullen, E.D. (1983) MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett., 62, 5362.CrossRefGoogle Scholar
O’Brien, P.J., Röhr, C., Okrusch, M. and Patzak, M. (1992) Eclogite facies relics and a multistage breakdown in metabasites of the KTB pilot hole, NE Bavaria: Implications for the Variscan tectonometamorphic evolution of the NW Bohemian Massif. Contrib. Mineral. Petrol, 112, 261–78.CrossRefGoogle Scholar
Patiño Douce, A.E. and Johnston, A.D. (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol., 107, 202–18.CrossRefGoogle Scholar
Paulssen, H. and Visser, J. (1993) The crustal structure in Iberia inferred from P-wave coda. Tectonophysics, 221, 111–23.CrossRefGoogle Scholar
Pearce, J.A. and Norry, M.J. (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 69, 3347.CrossRefGoogle Scholar
Raheim, A. and Green, D.H. (1975) Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient of coexisting garnet and clinopyroxene. Contrib. Mineral. Petrol, 48, 179203.CrossRefGoogle Scholar
Ridley, J. (1989) Vertical movement in orogenic belts and the timing of metamorphism relative to deformation. Pp. 103–15 in: Evolution of Metamorphic Belts (Daly, J.S.J., Cliff, R.A. and Yardley, B.W.D., editors). Spec. Publ., 43. Geological Society, London.Google Scholar
Ringwood, A.E. (1975) Composition and Petrology of the Earth’s Mantle. McGraw Hill, New York.Google Scholar
Robinson, P., Spear, F.S., Schumacher, J.C., Laird, J., Klein, C, Evans, B.W. and Doolan, B.L., (1982) Phase relations of metamorphic amphiboles: natural occurrence and theory. Pp. 127 in: Amphiboles and other Hydrous Pyriboles-Mineralogy (Veblen, D.R. and Ribbe, P.H., editors). Reviews in Mineralogy, 9B. Mineralogical Society of America, Washington DC.Google Scholar
Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation and Interpretation. Longman, Essex.Google Scholar
Ruppel, C. and Hodges, K.V. (1994) Presssure-temperature-time paths from two-dimensional thermal models: prograde, retrograde, and inverted metamorphism. Tectonics, 13, 1744.CrossRefGoogle Scholar
San José, M.A., Pieren, A.P., García-Hidalgo, J.F., Herranz, P., Peláez, J.R. and Perejón, A. (1990) Central Iberian Zone. Anteordovician Stratigraphy. Pp. 147–59 in: Pre-Mesozoic Geology of Iberia (Dallmeyer, R.D. and Martinez Garcia, E., editors). Springer Verlag, Berlin.Google Scholar
Saunders, A.D. and Tarney, J. (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. Pp. 5976 in: Marginal Basin Geology (Kokelar, B.P. and Howells, M.F., editors). Spec. Publ., 16. Geological Society, London.Google Scholar
Spear, F.S. (1991) On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. J. Metam. Geol., 9, 379–88.CrossRefGoogle Scholar
Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Monograph of the Mineralogical Society of America, Washington DC.Google Scholar
Sun, S.S. (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and islands arcs. Phil. Trans. R. Soc., A297, 409–45.Google Scholar
Thompson, A.B., Schulmann, K. and Jezek, J. (1997) Extrusion tectonics and elevation of lower crustal metamorphic rocks in convergent orogens. Geology, 25, 491–4.2.3.CO;2>CrossRefGoogle Scholar
Valverde Vaquero, P. Hernáiz, P.P., Escuder, J. and Dunning, G.R. (1995) Comparison of the pre-Cambrian and Paleozoic evolution of the Sierra de Guadarrama (Central Iberian Zone, Spain) and the Gondwana margin, NFLD Appalachians (GMNA). Terra Abstracts, 7, 278.Google Scholar
Viallete, Y., Casquet, C., Fuster, J.M., Ibarrola, E., Navidad, M., Peinado, M. and Villaseca, C. (1987) Geochronological study of orthogneisses from the Sierra de Guadarrama (Spanish Central System). Neues Jarhb. Mineral. Mh., H10, 465–79.Google Scholar
Villaseca, C. (1983) Evolución metamórfica del sector centro-septentrional de la Sierra de Guadarrama. PhD Thesis, Univ. Complutense de Madrid.Google Scholar
Villaseca, C. (1985) Microdioritas de afinidad toleítica en las bandas de cizalla de Segovia. Estudios Geológicos, 41, 11–5.CrossRefGoogle Scholar
Villaseca, C. and Barbero, L. (1994) Estimación de las condiciones del metamorfismo hercínico de alta presidn de la Sierra de Guadarrama. Geogaceta, 16, 2730.Google Scholar
Villaseca, C, Barbero, L. and Rogers, G. (1998) Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos, 43, 5579.CrossRefGoogle Scholar
Villaseca, C., Barbero, L., Huertas, M.J., Andonaegui, P. and Bellido, F. (1993) A cross-section through Hercynian granites of the Central Iberian Zone. Excursion Guide. C. S. I. C., Madrid.Google Scholar
Wildberg, H.D.H., Bischoff, L. and Baumann, A. (1989) U-Pb ages of zircon from meta-igneous and metasedimentary rocks of the Sierra de Guadarrama: implications for the Central Iberian crustal evolution. Contrib. Mineral. Petrol., 103, 253–62.CrossRefGoogle Scholar
Willett, S.D., Beaumont, C. and Fullsack, P. (1993) Mechanical models for the tectonics of doubly vergent compressional orogens. Geology, 21, 371–4.2.3.CO;2>CrossRefGoogle Scholar
Winkler, H.G.F. (1976) Petrogenesis of Metamorphic Rocks. Springer, Berlin.CrossRefGoogle Scholar
Wood, B.J. and Banno, S. (1973) Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol., 42, 109–24.CrossRefGoogle Scholar