Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-05T08:48:51.326Z Has data issue: false hasContentIssue false

First occurrence of moskvinite-(Y) in the Ilímaussaq alkaline complex, South Greenland – implications for rare-earth element mobility

Published online by Cambridge University Press:  02 January 2018

Henrik Friis*
Affiliation:
Natural History Museum, University of Oslo, PO 1172 Blindern, 0318 Oslo, Norway
*

Abstract

Moskvinite-(Y), Na2K(Y,REE)Si6O15, is a rare mineral, which until now has only been described from its type locality Dara-i-Pioz, Tajikistan. At Ilímaussaq moskvinite-(Y) was discovered in a drill core from Kvanefjeld, where it occurs as a replacement mineral associated with a mineral belonging to the britholite group. The composition was determined by a combination of electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry analyses. The empirical formula based on 15 oxygens is Na1.94K0.99(Y0.94Yb0.03Er0.03 Dy0.03Ho0.01Gd0.01) ∑1.05Si5.98O15. The coexistence of an almost pure Y and a light rare-earth element (REE) mineral is interpreted as fractionation of REE and Y during the replacement of an earlier formed REE mineral. Theoretical calculations of the observed replacement of feldspathoids by natrolite show that the generated fluid would have pH > 8, which inhibits large scale mobility of REE. In addition, a K-Fe sulfide member of the chlorbartonite-bartonite group is for the first time observed in Ilímaussaq where it occurs where sodalite is replaced by natrolite and arfvedsonite by aegirine. The sulfide incorporates the S and some of the Cl generated by the alteration of sodalite, whereas the K and Fe originates from the replacement of arfvedsonite by aegirine.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agakhanov, A.A., Pautov, L.A., Sokolova, E., Hawthorne, F.C. and Karpenko, V.Y. (2003) Moskvinite-(Y), Na2K(Y,REE)[Si6O15], a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 132 1521.[in Russian].Google Scholar
Andersen, T. and Sørensen, H. (2005) Stability of naujakasite in hyperagpaitic melts, and the petrology of naujakasite lujavrite in the Ilímaussaq alkaline complex, South Greenland. Mineralogical Magazine, 69 125136.CrossRefGoogle Scholar
Andersen, T., Elburg, M.A. and Erambert, M. (2012) Petrology of combeite- and götzenite-bearing nephel-inite at Nyiragongo, Virunga Volcanic Province in the East African Rift. Lithos, 152 105121.CrossRefGoogle Scholar
Andersen, T., Elburg, M.A. and Erambert, M. (2014) Extreme peralkalinity in delhayelite- and andremeyer-ite-bearing nephelinite from Nyiragongo volcano, East African Rift. Lithos, 206 164178.CrossRefGoogle Scholar
Bailey, J.C., Gwozdz, R., Rose-Hansen, J. and Sørensen, H. (2001) Geochemical overview of the Ilímaussaq alkaline complex, South Greenland. Pp. 3553 in The Ilímaussaq alkaline complex, South Greenland: status of mineral¬ogical research with new results(H. Sørensen, editor). Geology of Greenland Survey Bulletin, 190. Geological Survey of Denmark and Greenland, Copenhagen.CrossRefGoogle Scholar
Bianconi, F., Haldemann, E.G. and Muir, J.E. (1978) Geology and nickel mineralization of the eastern end of the Finero ultramafic-mafic complex (Ct. Ticino, Swizerland). Schweizerische Mineralogische und Petrographische Mitteilungen, 58, 223236 Google Scholar
Borst, A.M., Friis, H., Andersen, T., Nielsen, T.F.D.., Waight, T.E. and Smit, M.A. (2015) Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineraliza¬tion in agpaitic systems. Mineralogical Magazine, 80, 530. CrossRefGoogle Scholar
Chakhmouradian, A.R., Halden, N.M., Mitchell, R.H. and Horváth, L. (2007) Rb-Cs-rich rasvumite and sector-zoned “loparite-(Ce)” from Mont Saint-Hilaire (Québec, Canada) and their petrologic significance. European Journal of Mineralogy, 19, 533546. CrossRefGoogle Scholar
Clarke, D.B., Mitchell, R.H., Chapman, C.A.T.. and MacKay, R.M. (1994) Occurrence and origin of djerfisherite from the Elwin Bay kimberlite, Somerset Island, Northwest Territory. The Canadian Mineralogist, 32, 815823. Google Scholar
Czamanske, G.K., Erd, R.C., Sokolova, M.N., Dobrovol'skaya, M.G. and Dmitrieva, M.T. (1979) New data on rasvumite and djerfisherite. American Mineralogist, 64, 776778. Google Scholar
Czamanske, G.K., Erd, R.C., Leonard, B.F. and Clark, J.R. (1981) Bartonite, a new potassium iron sulfide mineral. American Mineralogist, 66, 369375. Google Scholar
Dobrovolskaya, M.G., Tsepin, A.I., Evstigneeva, T.L., Vyal'sov, L.N. and Zaozerina, A.O. (1981) Murunskite, K2Cu3FeS4, a new sulfide of potassium, copper and iron. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 110 468–73.[in Russian].Google Scholar
Donovan, ll, Hanchar, J.M., Picolli, P.M., Schrier, M.D., Boatner, L.A. and Jarosewich, E. (2003) A re-examination of the rare-earth-element orthophosphate standards in use for electron-microprobe analysis. The Canadian Mineralogist, 41, 221232.CrossRefGoogle Scholar
Ferguson, I (1964) Geology of the Ilímaussaq alkaline intrusion, South Greenland - Description of map and structure. Meddelelser Om Grønland, 172 182.Google Scholar
Hettmann, K., Wenzel, T., Marks, M. and Markl, G. (2012) The sulfur speciation in S-bearing minerals: New constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. American Mineralogist, 97, 16531661 CrossRefGoogle Scholar
Jago, B.C. and Gittins, J. (1999) Mn- and F-bearing rasvumite in natrocarbonatite at Oldoinyo Lengai volcano, Tanzania. Mineralogical Magazine, 63 5355.CrossRefGoogle Scholar
Jamtveit, B., Dahlgren, S. and Austrheim, H. (1997) High-grade contact metamorphism of calcareous rocks from the Oslo Rift, southern Norway. American Mineralogist, 82, 12411254. CrossRefGoogle Scholar
Jarosewich, E. and Boatner, L.A. (1991) Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter, 15, 397399 CrossRefGoogle Scholar
Karup-Møller, S., Rose-Hansen, J. and Sørensen, E. (2010) Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland. Bulletin of the Geological Society of Denmark, 58, 7588 CrossRefGoogle Scholar
Khomyakov, A.P. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. 1st. Edition. Oxford University Press, Oxford, pp. 223.Google Scholar
Krumrei, T.V., Villa, I.M., Marks, M.A.W.. and Markl, G. (2006) A 40Ar/39Ar and U/Pb isotopic study of the Ilímaussaq complex, South Greenland: Implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex. Chemical Geology, 227,258273 CrossRefGoogle Scholar
Lisitsin, D.V., Dobrovol'skaya, M.G., Tsepin, A.I., Shcherbachev, D.K., Trubkin, N.V. and Kononkova, N.N. (2002) Sulfide mineralization in high-alkaline pegmatites of the Koashva deposit (Khibiny Massif, Kola Peninsula). Geology of Ore Deposits, 44, 385395. Google Scholar
Makovicky, M., Makovicky, E., Leth Nielsen, B., Karup-Møller, S. and Sørensen, E. (1980) Mineralogical, radiographic and uranium leaching studies on the uranium ore from Kvanefjeld, Ilímaussaq, South Greenland. Risoe-R, No. 416. Forskningscenter Risoe, Denmark.Google Scholar
Markl, G. (2001) A new type of silicate liquid immiscibility in peralkaline nepheline syenites (lujav-rites) of the Ilímaussaq complex, South Greenland. Contributions to Mineralogy and Petrology, 141, 458472. CrossRefGoogle Scholar
Markl, G. and Baumgartner, L. (2002) pH changes in peralkaline late-magmatic fluids. Contribution to Mineralogy and Petrology, 144, 331346 CrossRefGoogle Scholar
Markl, G., Marks, M., Schwinn, G. and Sommer, H. (2001) Phase equilibrium constraints on intensive crystallization parameters of the Ilímaussaq complex, South Greenland. Journal of Petrology, 42, 22312258. CrossRefGoogle Scholar
Marks, M.A.W.. and Markl, G. (2015) The Ilímaussaq alkaline complex, South Greenland. Pp. 649691 in: Layered Intrusion. (B. Charlier O. Namur R. Latypov and C. Tegner, editors). Springer Verlag, Dordrecht, The Netherlands.CrossRefGoogle Scholar
McDonald, A.M., Chao, G.Y. and Grice, J.C. (1994) Abenakiite-(Ce), a new silicophospate carbonate mineral from Mont Saint-Hilaire, Quebec: description and structure determination. The Canadian Mineralogist, 32, 843854..Google Scholar
Migdisov, A.A. and Williams-Jones, A.E. (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineralium Deposita, 49, 987997. CrossRefGoogle Scholar
Mitchell, R.H. (1997) Carbonate—carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo Lengai natrocarbonatite. Mineralogical Magazine, 61, 779789. CrossRefGoogle Scholar
Mitchell, R.H. (2006) Sylvite and fluorite microcrysts, and fluorite-nyerereite intergrowths from natrocarbo¬natite, Oldoinyo Lengai, Tanzania. Mineralogical Magazine, 70, 103114. CrossRefGoogle Scholar
Pekov, I.V., Chukanov, N.V., Lebedeva, Y.S., Pushcharovsky, D.Y., Ferraris, G., Gula, A., Zadov, A.E., Novakova, A.A. and Petersen, O.V. (2004) Potassicarfvedsonite, KNa2Fe2+4Fe3+Si8O22(OH)2, a K-dominant amphibole of the arfvedsonite series from agpaitic pegmatites — Mineral data, structure refinement and disorder in the A site. Neues Jahrbuch für Mineralogie - Monatshefte, 555-574.CrossRefGoogle Scholar
Petersen, O.V., Johnsen, O., Bernhardt, H.J. and Medenbach, O. (1993) Dorfmanite, Na2HPO4-2H2O, from the Ilímaussaq Alkaline Complex, South Greenland. Neues Jahrbuch für Mineralogie — Monatshefte, 254-258.Google Scholar
Petersen, O.V., Khomyakov, A.P. and Sørensen, H. (2001) Natrophosphate from the Ilímaussaq alkaline complex, South Greenland. Pp. 139-141 in: The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results (H. Sørensen, editor). Geology of Greenland Survey Bulletin, 190. Geological Survey of Denmark and Greenland, Copenhagen.Google Scholar
Pouchou, J.L. and Pichoir, F. (1984) Quantitative micro-analytic possibilities using a new formulation of matrix effects. Journal de Physique, 45, 1720 Google Scholar
Sahama, T.G. (1956) Optical anomalies in arfvedsonite from Greenland. American Mineralogist, 41, 509512. Google Scholar
Salvi, S. and Williams-Jones, A.E. (2004) Alkaline granite-syenite deposits. Pp. 315-341 in: Rare-Element Geochemistry and Mineral Deposit. (R.L. Linnen and I.M. Samson, editors). Short Course Notes, 17. Geological Association of Canada, Ontario.Google Scholar
Sharygin, YY, Kamenetsky, V.S. and Kamenetsky, M.B. (2008) Potassium sulfides in kimberlite-hosted chlor-ide-“nyerereite” and chloride clasts of Udachnaya-East pipe, Yakutia, Russia. The Canadian Mineralogist, 46, 10791095. CrossRefGoogle Scholar
Sokolova, E., Hawthorne, F.C., Agakhanov, A.A. and Pautov, L.A. (2003) The crystal structure of moskvi-nite-(Y), Na2K(Y,REE)Si6O15 , a new silicate mineral with Si6O15 three-membered double rings from the Dara-i-Pioz moraine, Tien-Shan mountains, Tajikistan. The Canadian Mineralogist, 41, 513520 CrossRefGoogle Scholar
Sokolova, M.N., Dobrovol'skaya, M.G., Organova, N.I. and Dimitrik, A.L. (1970) A sulfide of iron and potassium, the new mineral rasvumite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 99,712720 Google Scholar
Sørensen, H. (1992) Agpaitic nepheline syenites - a potential source of rare elements. Applied Geochemistry, 7, 417–27.CrossRefGoogle Scholar
Sørensen, H. (2001) Brief introduction to the geology of the Ilímaussaq alkaline complex, South Greenland, and its exploration history. Pp. 7-23 in: The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new result. (H. Sørensen, editor). Geology of Greenland Survey Bulletin, 190. Geological Survey of Denmark and Greenland, Copenhagen.Google Scholar
Sørensen, H., Danø, M. and Petersen, O.V. (1971) On the mineralogy and paragenesis of tugtupite Na8Al2Be2Si8O24(Cl,S)2, from Ilímaussaq Alkaline Intrusion, South Greenland. Meddelelser Om Grønland, 181,138 Google Scholar
Sørensen, H., Bailey, J.C., Kogarko, L.N., Rose-Hansen, J. and Karup-Møller, S. (2003) Spheroidal structures in arfvedsonite lujavrite, Ilímaussaq alkaline complex, South Greenland — an example of macro-scale liquid immiscibility. Lithos, 70, 120 CrossRefGoogle Scholar
Sørensen, H., Bailey, J.C. and Rose-Hansen, J. (2011) The emplacement and crystallization of the U-Th-REE-rich agpaitic and hyperagpaitic lujavrites at Kvanefjeld, Ilímaussaq alkaline complex, South Greenland. Bulletin of the Geological Society of Denmark, 59, 6992. CrossRefGoogle Scholar
Upton, B.G.J.. (2013) Tectono-magmatic evolution of the younger Gardar southern rift, South Greenland. Geological Survey of Denmark and Greenland Bulletin, 29, 1124. CrossRefGoogle Scholar
Ussing, N.V. (1898) Mineralogical and petrographic investigations of Greenlandic nepheline syenites and related rocks. Meddelelser Om Grønland, 14, 1220..n Danish].Google Scholar
Ussing, N.V. (1912) Geology of the country around Julianehaab, Greenland. Meddelelser Om Grønland, 38, 1426. Google Scholar
Waight, T., Baker, J. and Willigers, B. (2002) Rb isotope dilution analyses by MC-ICPMS using Zr to correct for mass fractionation: towards improved Rb-Sr geochronology. Chemical Geology, 186,99116 CrossRefGoogle Scholar
Yakovenchuk, V.N., Pakhomovsky, Y.A., Men'shikov, Y.P., Ivanyuk, G.Y., Krivovichev, S.V. and Burns, P.C. (2003) Chlorbartonite, K6Fe24S26(Cl,S), anew mineral species from a hydrothermal vein in the Khibina massif, Kola peninsula, Russia: Description and crystal structure. The Canadian Mineralogist, 41, 503511 CrossRefGoogle Scholar
Zaccarini, F., Thalhammer, O.A.R.., Princivalle, F., Lenaz, D., Stanley, C.J. and Garuti, G. (2007) Djerfisherite in the Guli dunite complex, Polar Siberia: a primary or metasomatic phase. The Canadian Mineralogist, 45, 12011211. CrossRefGoogle Scholar