Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-30T05:51:05.342Z Has data issue: false hasContentIssue false

Fluid inclusions in granulites and eclogites from the Bergen Arcs, Caledonides of W. Norway

Published online by Cambridge University Press:  05 July 2018

T. Andersen
Affiliation:
Mineralogisk-Geologisk Museum, University of Oslo, N-0562 Oslo 5, Norway
H. Austrheim
Affiliation:
Mineralogisk-Geologisk Museum, University of Oslo, N-0562 Oslo 5, Norway
E. A. J. Burke
Affiliation:
Instituut vor Aardwetenschappen, Vrije Universiteit, Amsterdam, The Netherlands

Abstract

The Grenvillian granulite-facies complex on Holsnøy island, Bergen Arcs, W. Norway, has been metamorphosed at eclogite-facies conditions during the Caledonian orogeny (ca. 425 Ma). The granulite-eclogite facies transition takes place along shear zones and fluid pathways. Mineral thermobarometry indicates PT conditions of 800–900°C and 8–10 kbar for the Proterozoic granulite facies metamorphism and 700–800°C and 16–19 kbar for the eclogite-forming event. Quartz in the granulite facies complex contains CO2 fluid inclusions with less than 2.5 mole percent N2; the molar volumes are compatible with the PT conditions of the Proterozoic granulite metamorphism. Quartz in pegmatitic quartz + omphacite and quartz + phengite/paragonite veins coeval with shear-zone eclogites contain N2 ± CO2 fluid inclusions. Combined laser Raman microanalysis and microthermometry show that the least disturbed inclusions have XCO2 = 0.1–0.3, and molar volumes less than 40 cm3/mole, which may agree with the PT conditions during Caledonian high-pressure metamorphism. Younger, low-density N2 and N2-H2O fluid inclusions are the results of decrepitation and redistribution of early inclusions during the retrograde PT evolution of the eclogites.

Type
Magmatic/metamorphic environment
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T., Burke, E. A. J. and Austrheim, H. (1989) Nitrogen-bearing, aqueous fluid inclusions in some eclogites from the Western Gneiss Region of the Norwegian Caledonidcs. Contrib. Mineral. Petrol. 103, 153-65.CrossRefGoogle Scholar
Angus, A., Armstrong, B., deReuk, K. M., Altunin, V. V., Gadetskii, O. G., Chapela, G. A. and Rowlinson, J. S. (1973) International thermodynamic tables of thefluid state, 3: Carbon Dioxide. Pergamon Press, Oxford, 385 pp.Google Scholar
Angus, A., Armstrong, B., deReuk, K. M., Altunin, V. V., Gadetskii, O. G., Chapela, G. A. and Rowlinson, J. S. (1979) Ibid.. Nitrogen, 385 pp.Google Scholar
Austrheim, H. (1987) Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet. Sci. Lett. 81, 221-32.CrossRefGoogle Scholar
Austrheim, H. and Griffin, W. L. (1985) Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen Arcs, Western Norway. Chem. Geol. 50, 267-81.CrossRefGoogle Scholar
Austrheim, H. and Mørk, M. B. E. (1988) The lower continental crust of the Caledonian mountain chain: evidence from former deep crustal sections in western Norway. Nor. geol. unders. Special. Publ. 3, 102-13.Google Scholar
Burke, E. A. J. and Lustenhouwer, W. J. (1987) The application of a multi channel laser Raman microprobe (Microdil-28) to the analysis of fluid inclusions. Chem. Geol. 61, 11-17.Google Scholar
Cohen, A. S., O'Nions, R. K., Siegenthaler, R. and Griffin, W. L. (1988) Chronology of the pressure-temperature history recorded by a granulite terrain. Contrib. Mineral. Petrol. 98, 303-11.CrossRefGoogle Scholar
Crawford, M. L. and Hollister, L. S. (1986) Metamorphic fluids: The evidence from fluid inclusions. In Fluid-rock interactions during metamorphism (Walther, J. V. and Wood, B. J., eds.) Advances in physical geochemistry, 5, Springer Verlag, New York, pp. 135.Google Scholar
Darimont, A. and Heyen, G. (1988) Simulation des équilibres de phases dans le système CO2-N2: applications aux inclusions fluides. Bull. Minéal. 111, 179-82.CrossRefGoogle Scholar
Griffin, W. L. (1972) Formation of eclogites and the coronas in anorthosites, Bergen Arcs, Norway. Geol. Soc. Am. Mere. 135, 37-63.Google Scholar
Griffin, W. L. (1987) ‘On the eclogites of Norway’ 65 years later. Mineral. Mag. 51, 333-43.CrossRefGoogle Scholar
Heyen, G., Ramboz, C. and Dubessy, J. (1982) Simulation des équilibres de phases dans le système CO2-CH4 en dessous de 50 °C et de 100 bar. Application aux inclusions fluides. C.R. Acad. Sc. Paris série H, 294, 203-6.Google Scholar
Holland, T. J. B. (1979) High water activities in the generation of high-pressure kyanite eclogites of the Tauern window, Austria. J. Geol. 87, 1-27.CrossRefGoogle Scholar
Holland, T. J. B. (1983) Aqueous eclogite facies fluid inclusions (abstract). Geol. Soc. Newsletter 12, 13-14.Google Scholar
Holloway, J. R. (1981) Compositions and volumes of supercritical fluids in the earth's crust. Min. Assoc. Canada Short Course Handbook 6, 13-38.Google Scholar
Jamtveit, B. Bucher-Nurminen, K. and Austrheim, H. (1989) Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, Western Norway. Contrib. Mineral. Petrol. 104, 184-93.CrossRefGoogle Scholar
Kastrykina, V. M. and Firsova, S. O. (1982) Characteristics of composition of metamorphosing fluid (abstract). Proceedings of COFFI 15, 107.Google Scholar
Kechid, S. A. (1984) Etude pétrologique et minéralogique des eclogites de Liset (Stadtlandet, Norvège). Thesis, Muséum d'Histoire Naturelle, Paris, 168 pp.Google Scholar
Klemd, R. (1989) P-T evolution and fluid inclusion characteristics of eclogites, M∼nchberg gneiss complex, Germany. Contrib. Mineral. Petrol. 102, 221-9.CrossRefGoogle Scholar
Lappin, M. A. and Smith, D. C. (1981) Carbonate, silicate and fluid relationships in eclogites, Selje district and environs, SW Norway. Trans. R. Soc. Edinburgh Earath Sci. 72, 171-93.CrossRefGoogle Scholar
Luckscheiter, B. and Morteani, G. (1980a) Microther-mometrical and chemical studies of fluid inclusions in minerals from Alpine veins from the Penninic rocks of the central and western Tauern Window (Austria/Italy. Lithos 13, 61-77.CrossRefGoogle Scholar
Luckscheiter, B. and Morteani, G. (1980b) The fluid phase in eclogites, glaucophane- bearing rocks and amphibolites from the central Tauern Window as deduced from fluid inclusion studies. Tschermaks Mineral. Petrogr. Mitt. 27, 99-111.CrossRefGoogle Scholar
Mørk, M. B. E. (1985) A gabbro to eclogite transition in Flemsøy, Sunnmøre, west Norway. Chem. Geol. 50, 283-310.CrossRefGoogle Scholar
Newton, R. C. (1986) Fluids of granulite facies metamorphism. In Fluid-rock interactions during metamorphism (Walther, J. V. and Wood, B. J., eds.) Advances in physical geochemistry, 5, Springer Verlag, New York, pp. 3659.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and petrology of the Earth's mantle. McGraw-Hill, New York, 618 pp.Google Scholar
Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy 12, 644 pp.Google Scholar
Schrötter, H. W. and Klöckner, H. W. (1979) Raman scattering cross-sections in gases and liquids. In Raman spectroscopy of gases and liquids (Weber, A., ed.) Springer Verlag, pp. 123-66.CrossRefGoogle Scholar
Shatsky, V. S., Sobolev, N. V. and Tomilenko, A. A. (1985) Fluid inclusions in some eclogites and country rocks (abstract). Terra Cognita 5, 443.Google Scholar
Sobolev, N. V., Tomilenko, A. A. and Shatsky, V. S. (1985) Variations in fluid compositions of eclogitic complexes (abstract). Proceedings of COFFI 18, 388-9.Google Scholar
Sobolev, N. V., Dobretsov, N. L., Bakirov, A. B. and Shatsky, V. S. (1986) Eclogites from various types of metamorphic complexes in the USSR and the problems of their origin. Geol. Soc. Am. Mere. 164, 349-63.Google Scholar
Tomilenko, A. A. and Chupin, V. P. (1983) Thermobarogeochemistry of metamorphic formations (in Russian) Acad. Sci. SSSR Siberian Branch, 542, 200 pp.Google Scholar
Touret, J. L. R. (1981) Fluid inclusions in high grade metamorphic rocks. Min. Assoc. Canada Short Course Handbook 6, 182-208.Google Scholar
Touret, J. L. R. (1985) Fluid regime in southern Norway: the record of the fluid inclusions. In The deep Proterozoic crust in the North Atlantic provinces (Tobi, A. C. and Touret, J. L. R., eds.), D Reidel, Dordrecht, pp. 517-50.Google Scholar
Touret, J. L. R. and Hansteen, T. H. (1988) Geothermobarometry and fluid inclusions in a rock from the Doddabetta charnockite, Southwest India. Rend. Soc. It. Min. Pet. 43, 65-82.Google Scholar
Smith, D. C. and Kechid, S. A. (1982) Fluid inclusions in some eclogites and gneisses from the Western Gneiss Region, Norway (abstract). Terra Cognita 2, 318.Google Scholar
Van den Kerkhof, A. M. (1988a) Phase transitions and molar volumes of CO2-N2 inclusions. Bull. Mineral. 111, 257-66.Google Scholar
Van den Kerkhof, A. M. (1988b) The system CO2-CH4-N2 in fluid inclusions: Theoretical modelling and geological applications. Free University Press, Amsterdam, 206 pp.Google Scholar
White, W. B. (1974) The carbonate minerals. In The infrared spectra of minerals. (Farmer, V. C., ed.) Min. Soc. Monograph 4, 2284.Google Scholar