Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T13:22:16.231Z Has data issue: false hasContentIssue false

Isotopic and geochemical investigation of a carbonatite-syenite-phonolite diatreme, West Eifel (Germany)

Published online by Cambridge University Press:  05 July 2018

T. R. Riley
Affiliation:
Department of Geology, Wills Memorial Building, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
D. K. Bailey
Affiliation:
Department of Geology, Wills Memorial Building, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
R. E. Harmer
Affiliation:
Council for Geoscience, Private Bag X112, Pretoria 0001, South Africa
H. Liebsch
Affiliation:
Geochemisches Institut, Universitat Göttingen, Goldschmidtstraβe 3, 37033 Göttingen, Germany
F. E. Lloyd
Affiliation:
Department of Geology, Wills Memorial Building, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK
M. R. Palmer
Affiliation:
Department of Geology, Wills Memorial Building, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK

Abstract

The Rockeskyll complex in the north, central part of the Quaternary West Eifel volcanic field encapsulates an association of carbonatite, nephelinite and phonolite. The volcanic complex is dominated by three eruptive centres, which are distinct in their magma chemistry and their mode of emplacement. The Auf Dickel diatreme forms one centre and has erupted the only known carbonatite in the West Eifel, along with a broad range of alkaline rock types. Extrusive carbonatitic volcanism is represented by spheroidal autoliths, which preserve an equilibrium assemblage. The diatreme has also erupted xenoliths of calcite-bearing feldspathoidal syenite, phonolite and sanidine and clinopyroxene megacrysts, which are interpreted as fragments of a sub-volcanic complex. The carbonate phase of volcanism has several manifestations; extrusive lapilli, recrystallized ashes and calcite-bearing syenites, fragmented during diatreme emplacement.

A petrogenetic link between carbonatites and alkali mafic magmas is confirmed from Sr and Nd isotope systematics, and an upper mantle origin for the felsic rocks is suggested. The chemistry and mineralogy of mantle xenoliths erupted throughout the West Eifel indicate enrichment in those elements incompatible in the mantle. In addition, the evidence from trace element signatures and melts trapped as glasses support interaction between depleted mantle and small volume carbonate and felsic melts. This close association between carbonate and felsic melts in the mantle is mirrored in the surface eruptives of Auf Dickel and at numerous alkaline-carbonatite provinces worldwide.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.

References

Andersen, T. (1988) Evolution of peralkaline calcite carbonatite magma in the Fen complex, southeast Norway. Lithos, 22, 99112.CrossRefGoogle Scholar
Aspen, P., Upton, B. and Dickin, A.P., (1990) Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts; high-pressure syenitic debris from upper mantle sources. Eur. J. Mineral., 2, 503–17.CrossRefGoogle Scholar
Bailey, D.K., (1987) Mantle metasomatism-perspective and prospect. In Alkaline Igneous Rocks (Fitton, J.G. and Upton, B.G.J., eds). Geol. Soc. Spec. Pub., 30, 1–13.Google Scholar
Bailey, D.K., (1989) Carbonate melt from the mantle in the volcanoes of south-east Zambia. Nature, 338, 415–7.CrossRefGoogle Scholar
Bailey, D.K., (1993) Carbonate magmas. J. Geol. Soc., Lond., 150, 637–51.CrossRefGoogle Scholar
Barker, D.S., and Nixon, P. H. (1989) High-Ca, low alkali carbonatite volcanism at Fort Portal, Uganda. Contrib. Mineral. Petrol., 103, 166–77.CrossRefGoogle Scholar
Bell, K. and Blenkinsop, J. (1989) Neodymium and strontium isotope geochemistry of carbonatites. In Carbonatites: Genesis and Evolution (Bell, K., ed.). Unwin Hyman, 70–88.Google Scholar
Bell, K. and Peterson, T.D., (1991) Nd and Sr isotope systematics of Shombole volcano, East Africa, and the links between nephelinites, phonolites and carbonatites. Geology, 19, 582–5.2.3.CO;2>CrossRefGoogle Scholar
Bell, K. and Powell, J.L., (1970) Strontium isotope studies of alkalic rocks: The alkalic complexes of eastern Uganda. Geol. Soc. Am. Bull., 81, 3481–90.CrossRefGoogle Scholar
Bell, K. and Simonetti, A. (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J. Petrol., 37, 1321–39.CrossRefGoogle Scholar
Cloos, H. (1941) Bau und Tatigkeit von Tuffschloten. Untersuchungen an dem Schwabischen Vulkan. Geol. Rundsch., 32, 709800.CrossRefGoogle Scholar
Dalton, J.A., and Wood, B.J., (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet. Sci. Lett., 119, 511–25.CrossRefGoogle Scholar
Deines, P. (1989) Stable isotopes variaitons in carbonatites. In Carbonatites: Genesis and Evolution (Bell, K., ed.). Unwin Hyman, 301–59.Google Scholar
Draper, D.S., and Green, T. H. (1997) P-T phase relations of silicic, alkaline, aluminous mantle- xenolith glasses under anhydrous and C-O-H fluid saturated conditions. J. Petrol., 38, 11871224.CrossRefGoogle Scholar
Edgar, A.D., Lloyd, F.E., Forsyth, D.M., and Barnett, R.L., (1989) Origin of glass in upper mantle xenoliths from the Quaternary volcanics of Gees, West Eifel, Germany. Contrib. Mineral. Petrol., 103, 277–86.CrossRefGoogle Scholar
Ferguson, J., Danchin, R.V., and Nixon, P.H., (1973) Petrochemistry of kimberlite autoliths. In Lesotho Kimberlites (Nixon, P.H., ed.), Lesotho National Development Corporation, 285–93.Google Scholar
Haardt, W. (1914) Die vulkanischen Auswürflinge und Basalte am Killer Kopf bei Rockeskyll in der Eifel. Jb. preuβ. geol. L.-Anst. Berlin, 35, 177252.Google Scholar
Hay, R.L., and O'Neil, J.R., (1983) Carbonatite tuffs in the Laetolil beds of Tanzania and the Kaiserstuhl in Germany. Contrib. Mineral. Petrol., 82, 403–6.CrossRefGoogle Scholar
Hogarth, D.D., (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In Carbonatites: Genesis and Evolution (Bell, K., ed.). Unwin Hyman, 103–48.Google Scholar
Hopmann, P.M. (1914) Spuren eines Phonolithdurchbruches bei Rockeskyll in der Eifel. Zent. Mineral., Stutt., 35, 565–9.Google Scholar
Hubberten, H., Katz-Lehnert, K. and Keller, J. (1988) Carbon and oxygen isotope investigations in carbonatites and related rocks from the Kaiserstuhl, Germany. Chem. Geol., 70, 257–74.CrossRefGoogle Scholar
Ionov, D.A., Dupuy, C., O'Reilly, S.Y., Kopylova, M.G., and Genshaft, Y.S., (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet. Sci. Lett., 119, 283–97.CrossRefGoogle Scholar
Keller, J. (1984) Der jungtertiäre Vulkanismus Südwestdeutschlands: Exkuursionen im Kaiserstuhl und Hegau. Fortsch. Mineral., 62, 2–35.Google Scholar
Keller, J. and Hoefs, J. (1995) Stable isotope charcteristics of recent natrocarbonatites from Oldoinyo Lengai. In Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatite (Bell, K., ed.). IAVCEI Proceedings in volcanol., 4.Google Scholar
Keller, J., Brey, G., Lorenz, V. and Sachs, P. (1990) IAVCEI 1990 pre-conference excursion 2A: Volcanism and petrology of the upper Rhinegraben (Urach-Hegau-Kaiserstuhl). Mainz.Google Scholar
Knudsen, C. and Buchardt, B. (1991) Carbon and oxygen isotopic composition of carbonates from the Qaqarssuk Carbonatite Complex, southern West Greenland. Chem. Geol., 43, 293314.Google Scholar
Kramers, J.D., Betton, P.J., Cliff, R.A., Seck, H.A., and Sachtleben, T. (1981) Sr and Nd isotopic variations in volcanic rocks from the West Eifel and their significance. Fortsch. Mineral., 59, 246–7.Google Scholar
Lloyd, F.E., and Bailey, D.K., (1969) Carbonatite in the tuffs of the West Eifel, Germany. Contrib. Mineral. Petrol., 23, 136–9.CrossRefGoogle Scholar
Lloyd, F.E., and Bailey, D.K., (1975) Light element metasomatism of the continental mantle: the evidence and the consequences. Phys. Chem. Earth, 9, 389416.CrossRefGoogle Scholar
Macdonald, R., Kjarsgaard, B.A., Skilling, I.P., Davies, G.R., Hamilton, D.L., and Black, S. (1993) Liquid immiscibility between trachyte and carbonate in ash flow tuffs from Kenya. Contrib. Mineral. Petrol., 114, 276–87.CrossRefGoogle Scholar
Mariano, A.N., and Roeder, P.L., (1983) Kerimasi: a neglected carbonatite volcano. J. Geol., 91, 449–55.CrossRefGoogle Scholar
Mattey, D.P., Taylor, W.R., Green, D.H., and Pillinger, C.T., (1990) Carbon isotopic fractionation between CO2, vapour, silicate and carbonate melts: an experimental study to 30 kbar. Contrib. Mineral. Petrol., 104, 492505.CrossRefGoogle Scholar
Mertes, H. (1982) Aufbau und Genese des Westeifeler Vulkanfeldes. Ph.D. Thesis, Ruhr-Universitä t Böchum, Germany.Google Scholar
Mertes, H. and Schmincke, H.-U. (1983) Age distribution of volcanoes in the West Eifel. N. Jahr. Geol. Palaont., Abhand., 166, 260–93.Google Scholar
Mertes, H. and Schmincke, H.-U. (1985) Mafic potassic lavas of the Quaternary West Eifel volcanic field. Contrib. Mineral. Petrol., 89, 330–45.CrossRefGoogle Scholar
Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, 38, 757–75.CrossRefGoogle Scholar
Nelson, D.R., Chivas, A.R. Chappell, B.W. and McCulloch, M.T., (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta, 52, 117.CrossRefGoogle Scholar
O'Connor, T.K., Edgar, A.D., and Lloyd, F.E., (1996) Origin of glass in Quaternary mantle xenoliths from Meerfeldermaar, West Eifel, Germany: Implications for mantle-enrichmnet in the lithosphere in the Rhenish Massif. Canad. Mineral., 34, 187200.Google Scholar
Pineau, F., Javoy, M. and Allégre, C.J., (1973) Étude systematique des isotopes de l'oxygéne, du carbone et du strontium dans les carbonatites. Geochim. Cosmochim. Acta, 37, 2363–77.CrossRefGoogle Scholar
Reid, D.L., and Cooper, A.F., (1992) Oxygen and carbon isotope patterns in the Dicker Willelm carbonatite complex, southern Namibia. Chem. Geol., 94, 293305.CrossRefGoogle Scholar
Riley, T.R., (1994) Quaternary volcanism of the Rockeskyll complex, West Eifel, Germany and the carbonatite-nephelinite-phonolite association. Unpubl Ph.D. thesis, Univ. Bristol, UK.Google Scholar
Riley, T.R., Bailey, D.K., and Lloyd, F.E., (1996) Extrusive carbonatite from the Quaternary Rockeskyll complex, West Eifel, Germany. Canad. Mineral., 34, 389403.Google Scholar
Rollinson, H. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, Singapore. 352 pp.Google Scholar
Ryabchikov, L.D., Schreyer, W. and Abraham, K. (1982) Compositions of aqueous fluids Contrib. Mineral. Petrol., 79, 80–4.CrossRefGoogle Scholar
Schiano, P. and Clocchiatti, R. (1994) Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature, 368, 621–4.CrossRefGoogle Scholar
Schiano, P., Clocchiatti, R., Shimizu, N., Weis, D. and Mattielli, N. (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: Implications for metasomatism in the oceanic upper mantle. Earth Planet. Sci. Lett., 123, 167–78.CrossRefGoogle Scholar
Schleicher, H., Keller, J. and Kramm, U. (1990) Isotope studies on alkaline volcanics and carbonatites from the Kaiserstuhl, Federal Republic of Germany. Lithos, 26, 2135.CrossRefGoogle Scholar
Schrauder, M. and Navon, O. (1993) Solid carbon dioxide in a natural diamond. Nature, 365, 42–4.CrossRefGoogle Scholar
Scott, S. (1980) The geology of Longonot volcano, central Kenya: A question of volumes. Phil. Trans. Roy. Soc., Lond., 296A, 437–65.Google Scholar
Simonetti, A. and Bell, K. (1994) Isotopic and geochemical investigation of the Chilwa Island carbonatite complex, Malawi: evidence for a depleted mantle source region, liquid immiscibility, and open-system behaviour. J. Petrol., 35, 15971621.CrossRefGoogle Scholar
Stoppa, F. and Cundari, A. (1995) A new Italian carbonatite occurrence at Cupaello (Rieti) and its genetic significance. Contrib. Mineral. Petrol., 122, 275–88.CrossRefGoogle Scholar
Stosch, H.-G., Schmucker, A. and Reys, C. (1992) The nature and geological history of the deep crust under the Eifel, Germany. Terr. Res., 4, 5362.Google Scholar
Sweeney, R.J., (1994) Carbonatite melt compositions in the Earth's mantle. Earth Planet. Sci. Lett., 128, 259–70.CrossRefGoogle Scholar
Taylor, H.P., Frechen, J. and Degens, E.T., (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alno District, Sweden. Geochim. Cosmochim. Acta, 31, 407–30.CrossRefGoogle Scholar
Wallace, M.E., and Green, D.H., (1988) An experimental determination of primary carbonatite magma composition. Nature, 335, 343–6.CrossRefGoogle Scholar
Woolley, A.R., (1987) Lithosphere metasomatism and the petrogenesis of the Chilwa Province of alkaline igneous rocks and carbonatites, Malawi. J. Afr. Earth Sci., 6, 891–8.Google Scholar
Woolley, A.R., and Kempe, D.R.C., (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In Carbonatites: Genesis and Evolution (Bell, K., ed.). Unwin Hyman, 114.Google Scholar
Woolley, A.R., Barr, M.W.C., Din, V.K., Jones, G.C., Wall, F. and Williams, C.T., (1991) Extrusive carbonatites from the Uyaynah area, United Arab Emirates. J. Petrol., 32, 1143–67.CrossRefGoogle Scholar
Wörner, G., Zindler, A. Staudigel, H. and Schmincke, H.-U. (1986) Sr, Nd and Pb isotope geochemistry of Tertiary and Quaternary alkaline volcanics from West Germany. Earth Planet. Sci. Lett., 79, 107–19.CrossRefGoogle Scholar
Wright, J.B., (1966) Olivine nodules in phonolite of the east Otago Alkaline Province, New Zealand. Nature, 210, 519–20.CrossRefGoogle Scholar