Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-12T20:44:53.067Z Has data issue: false hasContentIssue false

Partial dehydration of laumontite: thermodynamic constraints and petrogenetic implications

Published online by Cambridge University Press:  05 July 2018

P. S. Neuhoff*
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA
D. K. Bird
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA

Abstract

Laumontite is a common zeolite mineral indicative of low-grade metamorphism of lavas and volcaniclastic sediments. Stoichiometric laumontite (CaAl2Si4O12·4.5H2O) dehydrates in air at 298.15 K, 1 bar to leonhardite (CaAl2Si4O12·3.5H2O) via loss of water from the W1 crystallographic site. Consideration of reported X-ray diffraction and calorimetric data indicates that the standard molal volume and entropy for dehydration of laumontite to leonhardite + liquid water are ∼13 cc/mol and ∼8 cal/molK, respectively, at 298.15 K, 1 bar. Equilibrium between laumontite and leonhardite occurs at 70 to 80% relative humidity at 298.15 K, 1 bar, corresponding to a standard molal Gibbs energy and enthalpy of reaction of ∼170±40 and ∼2630±100 cal/mol, respectively. Calculated univariant equilibrium for this reaction is nearly linear from 46±3°C at 1 bar to 235±3°C at 5000 bar. Comparison of geological observations with these results suggests that laumontite forms as ‘leonhardite’ during metamorphism and diagenesis. Consideration of ‘leonhardite’, instead of laumontite, in low-grade metamorphic phase relations facilitates prediction of the relative stabilities of zeolites in natural and geologic systems, where calculated entropies of reaction incorrectly predict that assemblages bearing fully hydrated laumontite are stable at lower temperatures than the zeolites heulandite and stilbite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, T. and Kohler, T. (1992) Re- and dehydration of laumontite: a single-crystal X-ray study at 100 K. Neues. Jahrb. Mineral. Mh., 385–97.Google Scholar
Artioli, G. and Ståhl, K. (1993) Fully hydrated laumontite: a structure study by flat plate and capillary powder diffraction techniques. Zeolites, 13, 249–55.CrossRefGoogle Scholar
Barany, R. (1962) Heats and free energies of formation of some hydrated and anhydrous sodium- and calcium-aluminum silicates. U.S. Bureau of Mines Report of Investigations no. 5900, 17 pp.Google Scholar
Basler, W.D. and Lechert, H. (1972) Molwarmemessungen an adsorptiertem wasser in leolithen Linde 13X. Zeits. Physik. Chemie neue Folge, 78, 199204.CrossRefGoogle Scholar
Carey, J.W. (1993) The heat capacity of hydrous cordierite above 295 K. Phys. Chem. Miner., 19, 578–83.CrossRefGoogle Scholar
Carey, J.W. and Bish, D.L. (1996) Equilibrium in the clinoptilolite-H2O system. Amer. Mineral., 81, 952–62.CrossRefGoogle Scholar
Cho, M., Maruyama, S. and Liou, J.G. (1987) An experimental investigation of heulandite-laumontite equilibrium at 1000 to 3000 bar Pfluid . Contrib. Mineral. Petrol., 97, 4350.CrossRefGoogle Scholar
Coombs, D.S. (1952) Cell size, optical properties and chemical composition of laumontite and leonhardite. Amer. Mineral., 37, 812–30.Google Scholar
Coombs, D.S., Ellis, A.J., Fyfe, W.S. and Taylor, A.M. (1959) The zeolite facies, with comments on the interpretation of hydrothermal syntheses. Geochim. Cosmochim. Acta, 17, 53107.CrossRefGoogle Scholar
Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmans, E. and Vezzalini, G. (1997) Recommended nomenclature for zeolite-minerals: Report of the subcommittee of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canad. Mineral., 35, 1571–606.Google Scholar
Crawford, W.A. and Fyfe, W.S. (1965) Lawsonite equilibria. Amer. J. Sci. 263, 262–70.CrossRefGoogle Scholar
Crossey, L.J., Frost, B.R. and Surdam, R.C. (1984) Secondary porosity in laumontite- bearing sandstones. Pp. 225–37 in: Clastic Diagenesis (McDonald, D.A., editor ). American Association of Petroleum Geologists Memoir 37, Tulsa, OK.Google Scholar
Fersman, A.E. (1909) Études sur les zeolites de la Russia. I. Leonhardite et laumontite dans les environs de Simferopolis (Crimee). Trav. Músee Géol. Pierre le Grand Acad. Imp. Sci. St. Pétersbourg Ser. 2, 2, 103–50.Google Scholar
Gabuda, S.P. and Kozlova, S.G. (1995) Guest-guest interaction and phase transitions in the natural zeolite laumontite. J. Incl. Phenom. Mol. Recogn., 22, 113.CrossRefGoogle Scholar
Haly, A.R. (1972) Specific heat of a synthetic zeolite and the heat of fusion of its absorbed water. J. Physics Chem. Solids, 33, 129–37.CrossRefGoogle Scholar
Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Amer. J. Sci., 278A, 229 p.Google Scholar
Helmold, K.P. and van de Kamp, P.C. (1984) Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene arkoses, Santa Ynez Mountains, California. Pp. 239–76 in: Clastic Diagenesis (McDonald, D.A., editor). American Association of Petroleum Geologists Memoir 37, Tulsa, OK.Google Scholar
Hemingway, B.S. and Robie, R.A. (1984 ) Thermodynamic properties of zeolites: Low temperature heat capacities and thermodynamic functions of phillipsite and clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low temperatures. Amer. Mineral., 69, 692700.Google Scholar
Iijima, A. (1978) Geological occurrences of zeolite in marine environments. Pp. 175–98 in: Natural Zeolites (Sand, L.B. and Mumpton, F.A., editors). Pergamon Press, Oxford.Google Scholar
Iijima, A. (1988) Diagenetic transformations of minerals as exemplified by zeolites and silica minerals; a Japanese view. Pp. 147209 in: Diagenesis II (Chilingarian, G.V., editor). Developments in Sedimentology, 43, Elsevier, Amsterdam.CrossRefGoogle Scholar
Johnson, G.K., Flotow, H.E., O'Hare, P.A.G. and Wise, W.S. (1982) Thermodynamic studies of zeolites: Analcime and dehydrated analcime. Amer. Mineral., 67, 736–48.Google Scholar
Johnson, J.W., Oelkers, E.H. and Helgeson, H.C. (1992) SUPCRT92; a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bar and 0 to 1000 degrees C. Computers Geosci., 18, 899947.CrossRefGoogle Scholar
King, E.G. and Weller, W.W. (1961) Low-temperature heat capacities and entropies at 298.15 K of some sodium- and calcium-alumi num silicates. U.S. Bureau of Mines Report of Investigations 5855, 1–8.Google Scholar
Kiseleva, I., Navrotsky, A., Belitsky, I.A. and Fursenko, B.A. (1996 a) Thermochemistry and phase equilibria in calcium zeolites. Amer. Mineral., 81, 658–67.CrossRefGoogle Scholar
Kiseleva, I., Navrotsky, A., Belitsky, I.A. and Fursenko, B.A. (1996 b) Thermochemistry of natural potassium sodium calcium leonhardite and its cation exchanged forms. Amer. Mineral., 81, 668–75.CrossRefGoogle Scholar
Kristmannsdóttir, H. and Tómasson, J. (1978) Zeolite zones in geothermal areas in Iceland. Pp. 277–84 in: Natural Zeolites (Sand, L.B. and Mumpton, F.A., editors). Pergamon Press, Oxford.Google Scholar
Line, C.M.B., Winkler, B. and Dove, M.T. (1994) Quasielastic incoherent neutron scattering study of the rotational dynamics of the water molecules in analcime. Phys. Chem. Miner., 1994, 451–9.Google Scholar
Liou, J.G. (1970) Synthesis and stability relations of wairakite, CaAl2Si4O12H2O. Contrib. Mineral. Petrol., 27, 259–82.CrossRefGoogle Scholar
Liou, J.G. (1971 a) Stilbite-laumontite equilibrium. Contrib. Mineral. Petrol., 31, 171–7.CrossRefGoogle Scholar
Liou, J.G. (1971 b) P-T stabilities of laumontite, wairakite, lawsonite and related minerals in the system CaAl2Si2O8-SiO2-H2O. J. Petrol., 12, 379411.CrossRefGoogle Scholar
Liou, J.G., Maruyama, S. and Cho, M. (1985) Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism. Mineral. Mag., 49, 321–33.CrossRefGoogle Scholar
Maier, C.G. and Kelley, K.K. (1932) An equation for the representation of high temperature heat content data. Amer. Chem. Soc. J., 54, 3243–6.CrossRefGoogle Scholar
McCulloh, T.H., Frizzell, V.A. Jr., Stewart, R.J. and Barnes, I. (1981) Precipitation of laumontite with quartz, thenardite and gypsum at Sespe Hot Springs, western Transverse Ranges, California. Clays Clay Miner., 29, 353–64.CrossRefGoogle Scholar
Merino, E. (1975) Diagenesis in Tertiary sandstones from Kettleman North Dome, California. I. Diagenetic mineralogy. J. Sed. Pet., 45, 320–36.Google Scholar
Neuhoff, P.S. (2000) Thermodynamic properties and parageneses of rock-forming zeolites. PhD thesis, Stanford Univ., Stanford, CA.Google Scholar
Neuhoff, P.S., Fridriksson, Th. and Bird, D.K. (2000) Zeolite parageneses in the North Atlantic Igneous Province: Implications for geotectonics and groundwater quality of basaltic crust. Int. Geol. Rev., 42, 1544.CrossRefGoogle Scholar
Noh, J.H. and Boles, J.R. (1993) Origin of zeolite cements in the Miocene sandstones, North Tejon oil fields, California. J. Sed. Pet., 63, 248–60.Google Scholar
Paukov, I.E. and Fursenko, B.A. (1998 a) Low temperature heat capacity and thermodynamic functions of leonhardite. Geochem. Int., 36, 471–3.Google Scholar
Paukov, I.E. and Fursenko, B.A. (1998 b) Low temperature heat capacity and thermodynamic functions of laumontite. Geochem. Int., 36, 1177–9.Google Scholar
Ransom, B. and Helgeson, H.C. (1994) A chemical and thermodynamic model of aluminous dioctahedral 2:1 layer clay minerals in diagenetic processes; regular solution representation of interlayer dehydration in smectite. Amer. J. Sci. 294, 449–84.CrossRefGoogle Scholar
Robie, R.A. and Hemingway, B.S. (1972) The heat capacities at low-temperatures and entropies at 298. 15 K of nesquehonite, MgCO3·3H2O and hydromagnesite. Amer. Mineral., 57, 1768–81.Google Scholar
Smárason, O.B., Tómasson, J. and Ganda, S. (1989) Alteration mineralogy of the Elliôaár geothermal field, Reykjavík, Iceland. Pp. 643–6 in: Water-Rock Interaction 6 (Miles, D.L. editor).Google Scholar
Ståhl, K. and Artioli, G. (1993) A neutron powder diffraction study of fully deuterated laumontite. Eur. J. Mineral., 5, 851–6.CrossRefGoogle Scholar
Ståhl, K., Artioli, G and Hanson, J.C. (1996) The dehydration process in the zeolite laumontite: a realtime synchrotron X-ray powder diffraction study. Phys. Chem. Miner., 23, 328–36.CrossRefGoogle Scholar
Steiner, A. (1977) The Wairakei geothermal area, North Island, New Zealand: its subsurface geology and hydrothermal rock alteration. New Zealand Dept. of Scientific and Industrial Research, Wellington, 135 pp.Google Scholar
Thompson, A.B. (1970) Laumontite equilibria and the zeolite facies. Amer. J. Sci., 269, 267–75.CrossRefGoogle Scholar
Thompson, A.B. (1971) Analcite-albite equilibria at low temperatures. Amer. J. Sci., 271, 7992.CrossRefGoogle Scholar
van Reeuwijk, L.P. (1974) The Thermal Dehydration of Natural Zeolites. Veenman, H. and Zonen, B.V., Wageningen, The Netherlands.Google Scholar
Yamazaki, A., Shiraki, T., Nishido, H. and Otsuka, R. (1991) Phase change of laumontite under relative humidity-controlled conditions. Clay Sci., 8, 7986.Google Scholar