Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T19:41:49.376Z Has data issue: false hasContentIssue false

Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names

Published online by Cambridge University Press:  05 July 2018

Douglas S. Coombs
Affiliation:
Geology Department, University of Otago, P.O. Box 56, Dunedin, New Zealand
Alberto Alberti
Affiliation:
Istituto di Mineralogia, Università di Ferrara, Corso Ercole I° d'Este, 32, I-44100, Italy
Thomas Armbruster
Affiliation:
Laboratorium für chemische und mineralogische Kristallographie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Gilberto Artioli
Affiliation:
Dipartimento di Scienze della Terra, Università di Milano, via Botticelli, 23, I-20133 Milano, Italy
Carmine Colella
Affiliation:
Dipartimento di Ingegneria dei Materiali e della Produzione, Università Federico II di Napoli, Piazzale V. Tecchio 80, I-80125 Napoli, Italy
Ermanno Galli
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy
Joel D. Grice
Affiliation:
Mineral Sciences Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4, Canada
Friedrich Liebau
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
Joseph A. Mandarino
Affiliation:
Department of Mineralogy, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada
Hideo Minato
Affiliation:
5-37-17 Kugayama, Suginami-ku, Tokyo 168, Japan
Ernest H. Nickel
Affiliation:
Division of Exploration and Mining, CSIRO, Private Bag, Wembley 6014, Western Australia, Australia
Elio Passaglia
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy
Donald R. Peacor
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Simona Quartieri
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy
Romano Rinaldi
Affiliation:
Dipartimento di Scienze della Terra, Università di Perugia, I-06100 Perugia, Italy
Malcolm Ross
Affiliation:
U.S. Geological Survey, MS 954, Reston, Virginia 20192, U.S.A.
Richard A. Sheppard
Affiliation:
U.S. Geological Survey, MS 939, Box 25046, Federal Centre, Denver, Colorado 80225, U.S.A.
Ekkehart Tillmanns
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstasse 14, A-1090, Wien, Austria
Giovanna Vezzalini
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, via S. Eufemia, 19, I-41100 Modena, Italy

Abstract

This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in spacegroup symmetry and in order—disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si : Al ratio except for heulandite (Si : Al < 4.0) and clinoptilolite (Si : Al ⩾ 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term ‘ideal formula’ should be avoided in referring to a simplified or averaged formula of a zeolite.

Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, - Na, -K; clinoptilolite-K, -Na, -Ca; dachiardite-Ca, -Na; erionite-Na, -K, -Ca; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K; stilbite-Ca, -Na.

Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Akizuki, M. (1985) The origin of sector twinning in harmotome. Amer. Mineral., 70, 822–8.Google Scholar
Akizuki, M. (1986) Al-Si ordering and twinning in edingtonite. Amer. Mineral., 71, 1510–4.Google Scholar
Akizuki, M. (1987 a) Crystal symmetry and orderdisorder structure of brewsterite. Amer. Mineral., 72, 645–8.Google Scholar
Akizuki, M. (1987 b) An explanation of optical variation in yugawaralite. Mineral. Mag., 51, 615–20.CrossRefGoogle Scholar
Akizuki, M. and Konno, H. (1985) Order—tisorder structure and the internal texture of stilbite. Amer. Mineral., 70, 814–21.Google Scholar
Akizuki, M., Kudoh, Y. and Satoh, Y. (1993) Crystal structure of the orthortaombic {001} growth sector of stilbite. Eur. J. Mineral., 5, 839–43.CrossRefGoogle Scholar
Akizuki, M., Kudoh, Y. and Kuribayashi, T. (1996) Crystal structures of the ﹛011﹜, ﹛610﹜, and ﹛010﹜ growth sectors in brewsterite. Amer. Mineral., 81, 1501–6.CrossRefGoogle Scholar
Alberti, A. (1972) On the crystal structure of the zeolite heulandite. Tschermaks Min. Petr. Mitt., 18, 129–46.CrossRefGoogle Scholar
Alberti, A. (1975 a) The crystal structure of two clinoptilolites. Tsehermaks Min. Petr. Mitt., 22, 25–37.CrossRefGoogle Scholar
Alberti, A. (1975 b) Sodium-rich daehiardite from Alpe di Siusi, Italy. Contrib. Mineral. Petrol., 49, 63–6.CrossRefGoogle Scholar
Alberti, A. and Sabelli, C. (1987) Statistical and true symmetry of ferrierite: possible absence of straight T–O–T bridging bonds. Zeits. Kristallogr., 178, 249–56.CrossRefGoogle Scholar
Alberti, A. and Vezzalini, G. (1979) The crystal structure of amicite, a zeolite. Acta Crystallogr., B35, 2866–9.CrossRefGoogle Scholar
Alberti, A. and Vezzalini, G. (1981 a) A partially disordered natrolite: relationships between cell parameters and Si-A1 distribution. Acta Crystallogr., B37, 781–8.CrossRefGoogle Scholar
Alberti, A. and Vezzalini, G. (1981 b) Crystal energiesand coordination of ions in partially occupied sites: dehydrated mazzite. Bull. Minéral., 104, 59.CrossRefGoogle Scholar
Alberti, A., Hentschel, G. and Vezzalini, G. (1979) Amicite, a new natural zeolite. Neues Jahrb. Mineral Mh., 481–8.Google Scholar
Alberti, A., Vezzalini, G. and Tazzoli, V. (1981) Thomsonite: a detailed refinement with cross checking by crystal energy calculations. Zeolites, 1, 91–7.CrossRefGoogle Scholar
Alberti, A., Galli, E., Vezzalini, G., Passaglia, E. and Zanazzi, P.F. (1982 a) Position of cations and water molecules in hydrated chabazite. Natural and Na-, Ca-, Sr- and K-exchanged chabazites. Zeolites, 2, 303–9.CrossRefGoogle Scholar
Alberti, A., Pongiluppi, D. and Vezzalini, G. (1982 b) The crystal chemistry of natrolite, mesolite and scolecite. Neues Jahrb. Mineral Abh., 143, 231–48.Google Scholar
Alberti, A., Galli, E., and Vezzalini, G. (1985) Epistilbite: an acentric zeolite with domain structure. Zeits. Kristallogr., 173, 257–65.CrossRefGoogle Scholar
Alberti, A., Cruciani, G. and Dauru', I. (1995) Orderdisorder in natrolite-group Minerals. Eur. J. Mineral., 7, 501–8.CrossRefGoogle Scholar
Alberti, A., Vezzalini, G., Galli, E. and Quartieri, S. (1996) The crystal structure of gottardiite, a new natural zeolite. Eur. J. Mineral, 8, 6975.CrossRefGoogle Scholar
Alietti, A. (1972) Polymorphism and crystal-chemistry of heulandites and clinoptilolites. Amer. Mineral., 57, 1448–62.Google Scholar
Armbruster, T. (1993) Dehydration mechanism of clinoptilolite and heulandite: Single-crystal X-ray study of Na-poor, Ca-, K-, Mg-rich clinoptilolite at 100 K. Amer. Mineral., 78, 260–4.Google Scholar
Armbruster, T. and Kohler, T. (1992) Re- and dehydration of laumontite: a single-crystal X-ray study at 100 K. NeuesJahrb. Mineral. Mh., 385–97.Google Scholar
Artioli, G. (1992) The crystal structure of garronite. Amer. Mineral., 77, 189–96.Google Scholar
Artioli, G. and Foy, H. (1994) Gobbinsite from Magheramome Quarry, Northern Ireland. Mineral. Mag., 58, 615–20.CrossRefGoogle Scholar
Artioli, G. and Kvick, Å. (1990) Synchrotron X-ray Rietveld study ofperlialite, the natural counterpart of synthetic zeolite-L. Eur. J. Mineral., 2, 749–59.CrossRefGoogle Scholar
Artioli, G. and Ståhl, K. (1993) Fully hydrated laumontite: A structure study by flat-plate and capillary powder diffraction techniques. Zeolites, 13, 249–55.CrossRefGoogle Scholar
Artioli, G. and Torres Salvador, M.R. (1991) Characterization of the natural zeolite gonnardite. Structure analysis of natural and cation exchanged species by the Rietveld method. Material Science Forum, 79-82, 845–50.CrossRefGoogle Scholar
Artioli, G., Smith, J.V. and Kvick, Å. (1984) Neutron diffraction study of natrolite, Na2Al2Si3O10.2H2O, at 20 K. Acta Crystallogr., C40, 1658–62.Google Scholar
Artioli, G., Smith, J.V. and Pluth, J.J. (1986a) X-ray structure refinement of mesolite. Acta Crystallogr., C42, 937–42.Google Scholar
Artioli, G., Rinaldi, R., Kvick, Å. and Smith, J.V. (1986b) Neutron diffraction structure refinement of the zeolite gismondine at 15 K. Zeolites, 6, 361–6.CrossRefGoogle Scholar
Artioli, G., Gottardi, G., Rinaldi, R., Satow, Y., Horiuchi, H., Ye, J., Sawada, H., Tanaka, M. and Tokonami, M. (1987) A single crystal diffraction study of the natural zeolite cowlesite. Photon Factory, National Laboratory for High Energy Physics, Activity Report 1987, 316.Google Scholar
Bartl, H. (1970) Strukturverfeinerung von Leonhardit, Ca[Al2Si4O12].3H2O, mittels Neutronenbeugung. Neues Jahrb. Mineral. Mh., 298310.Google Scholar
Baur, W.H. (1964) On the cation and water positions in faujasite. Amer. Mineral., 49, 697704.Google Scholar
Beger, R.M. (1969) The crystal structure and chemical composition of pollucite. Zeits. Kristallogr., 129, 280302.CrossRefGoogle Scholar
Bergerhoff, G., Baur, W.H. and Nowacki, W. (1958) Über die Kristallstruktur des Faujasits. Neues Jahrb. Mineral. Mh., 193200.Google Scholar
Beus, A.A. (1960). Geochemistry of Beryllium and the Genetic Types of Beryllium Deposits. Akademii Nauk, SSSR, Inst. Mineral., geokhim., i kristallochim. redkikh elementov, 1–329 (in Russian). Abstract in Amer. Mineral, 46, 244.Google Scholar
Bieniok, A., Joswig, W. and Baur, W. H. (1996). A study of paulingites: pore filling by cations and water molecules. Neues Jahrb. Mineral. Abh., 171, 119–34.Google Scholar
Bissert, G. and Liebau, F. (1986) The crystal structure of a triclinic bikitaite, Li[AlSi2O6].H2O, with ordered A1/Si distribution. Neues Jahrb. Mineral. Mh., 241–52.Google Scholar
Blackburn, W.H. and Dennen, W.H. (1997) Encyclopedia of Mineral Names. Canad. Mineral., Spec. Pub. 1. Google Scholar
Blumenbachs, J.F. (1791) Auszuge mid Kezensioneit bergmanischer und Mineralogischer Schriften. Bergmannisches Journal, 2, 489500.Google Scholar
Boggs, R.C, Howard, D.G., Smith, J.V. and Klein, G.L. (1993) Tschernichite, a new zeolite from Goble, Columbia County, Oregon. Amer. Mineral., 78, 822–6.Google Scholar
Boles, J.R. (1972) Composition, optical properties, cell dimensions, and thermal stability of some heulandite group zeolites. Amer. Mineral, 57, 1463–93.Google Scholar
Bonardi, M. (1979) Composition of type dachiardite from Elba: a re-examination. Mineral. Mag., 43, 548–9.CrossRefGoogle Scholar
Bonardi, M., Roberts, A.C. and Sabina, A.P. (1981) Sodium-rich dachiardite from the Francon Quarry, Montreal Island, Quebec. Canad. Mineral., 19, 285–9.Google Scholar
Bondi, M., Griffin, W.L., Mattioli, V. and Mottana, A. (1983) Chiavennite, CaMnBe2Si5O13(OH)2.2H2O, a new Mineral from Chiavenna (Italy). Amer. Mineral., 68, 623–7.Google Scholar
Bosc D'Antic, L. (1792) Mrmoire sur la chabazie. Journal d'Histoire Naturelle, 2, 181–4.Google Scholar
Breithaupt, A. (1846) Pollux. (Poggendorff's) Annalen der Physik und Chemie (Leipzig), 69, 439.Google Scholar
Brewster, D. (1825a) Description of gmelinite, a new Mineral species. Edinburgh J. Sci., 2, 262–7.Google Scholar
Brewster, D. (1825b) Description of levyne, a new Mineral species. Edinburgh J. Sci., 2, 332–4.Google Scholar
Brooke, H.J. (1820) On mesotype, needlestone, and thomsonite. Ann. Phil., 16, 193–4.Google Scholar
Brooke, H.J. (1822) On the comptonite of Vesuvius, the brewsterite of Scotland, the stilbite and the heulandite. Edinburgh Phil. J., 6, 112–5.Google Scholar
Cabella, R., Lucchetti, G., Palenzona, A., Quartieri, S. and Vezzalini, G. (1993) First occurrence of a Badominant brewsterite: structural features. Eur. J. Mineral., 5, 353–60.CrossRefGoogle Scholar
Černý, P. (1974) The present status of the analcimepollucite series. Canad. Mineral., 12, 334–41.Google Scholar
Černý, P. and Simpson, F.M. (1978) The Tanco pegmatite at Bemic Lake, Manitoba. X. Pollucite. Canad. Mineral., 16, 325–33.Google Scholar
Černý, P., Rinaldi, R. and Surdam, R.C. (1977) Wellsite and its status in the phillipsite-harmotome group. Neues Jahrb. Mineral. Abh., 128, 312–20.Google Scholar
Chao, G.Y. (1980) Paranatrolite, a new zeolite from Mont St-Hilaire, Quebec. Canad. Mineral., 18, 85–8.Google Scholar
Chen, T.T. and Chao, G.Y. (1980) Tetranatrolite from Mont St-Hilaire, Quebec. Canad. Mineral., 18, 7784.Google Scholar
Cho, M. and Liou, J.G. (1987) Prehnite-pumpellyite to greenschist facies transition in the Karmutsen metabasites, Vancouver Island, B. C. J. Petrol., 28, 417–43.CrossRefGoogle Scholar
Clark, A.M. (1993) Hey's Mineral Index. Chapman & Hall, London. 852 pp.Google Scholar
Cocco, G. and Garavelli, C. (1958) Riesame di alcune zeoliti elbane. Atti Soc. Toscana Scienze Naturali, 65, 262–83.Google Scholar
Coombs, D.S. (1955) X-ray observations on wairakite and non-cubic analcime. Mineral. Mag., 30, 699708.Google Scholar
Coombs, D.S. and Whetten, J.T. (1967) Composition of analcime from sedimentary and burial metamorphic rocks. Geol. Soc. Amer. Bull., 78, 269–82.CrossRefGoogle Scholar
Cronstedt, A.F. (1756) Observation and description of an unknown kind of rock to be named zeolites (in Swedish). Kongl. Vetenskaps Acad. Handl. Stockholm, 17, 120–3.Google Scholar
D'Achiardi, G. (1906) Zeoliti del filone della Speranza presso S. Piero in Campo (Elba). Atti Soc.Toscana Seienze Naturali, 22: 150–65.Google Scholar
Damour, M. (1842) Description de la faujasite, nouvelle esp∼ee minrrale. Annales des Mines, series 4, 1, 395–9.Google Scholar
Dana, E.S. (1914) A System of Mineralogy of J.D. Dana with Appendices I and II, 6th ed., Wiley, New York. Dana, J.D. (1868) A System of Mineralogy, 5th ed. John Wiley & Sons, New York; 827 pp.Google Scholar
Davis, R.J. (1958) Mordenite, ptilolite, flokite, and arduinite. Mineral. Mag., 31, 887–8.Google Scholar
De Gennaro, M. and Franco, E. (1976) La K-chabazite di alcuni “Tuff del Vesuvio”. Rend. Acad. Naz. Lincei, 40, 490–7.Google Scholar
Delamétherie, J.-C. de (1795) Théorie de la Terre, 1. Chez Maradan, Paris. 422 pp.Google Scholar
Della Ventura, G., Parodi, G.C. and Burragato, F. (1993) New data on merlinoite and related zeolites. Rend. Lincei Sci. Fisiche e Naturali, Series 9, 4, 303–12.CrossRefGoogle Scholar
Di Franco, S. (1942) Mineralogia Etnea. Zuccarello & Izzi, Catania. p 158–61.Google Scholar
Di Renzo, F. and Gabelica, Z. (1995) New data on the structure and composition of the silicoaluminophosphate vis+ite and a discreditation of its status as a zeolite. In Natural Zeolites “93: Occurrence, Properties, Use, (Ming, D.W. and Mumpton, F.A., eds.), International Committee on Natural Zeolites, Brockport, New York, pp. 173–85.Google Scholar
Di Renzo, F. and Gabelica, Z.. (1997) Barrerite and other zeolites from Kuiu and Kupreanof islands, Alaska. Canad. Mineral., 35, 691–8.Google Scholar
Dunn, P.J., Peacor, D.R., Newberry, N. and Ramik, R.A. (1980) Goosecreekite, a new calcium aluminum silicate hydrate possibly related to brewsterite and epistilbite. Canad. Mineral., 18, 323–7.Google Scholar
Eakle, A.S. (1898) Erionite, a new zeolite. Amer. J. Sci., series 4, 6, 66–8.CrossRefGoogle Scholar
Eberly, P.E., Jr. (1964) Adsorption properties of naturally occurring erionite and its cationic-exchanged forms. Amer. Mineral., 49, 3040.Google Scholar
Effenberger, H., Giester, G. Krause, W. and Bernhardt, H.-J. (1998) Tschrrtnerite, a copper-bearing zeolite from the Bellberg volcano, Eifel, Germany. Amer. Mineral., 83, 607–17.CrossRefGoogle Scholar
Engel, N. and Yvon, K. (1984) The crystal structure of parthrite. Zeits. Kristallogr., 169, 165–75.CrossRefGoogle Scholar
England, B.M. and Ostwald, J. (1979) Levyne-offretite intergrowths from Tertiary basalts in the Merriwa district, Hunter Valley, New South Wales, Australia. Australian Mineral., 25, 117–9.Google Scholar
Ercit, T.S. and Van Velthuizen, J. (1994) Ganltite, a new zeolite-like Mineral species from Mont Saint-Hilaire, Quebec, and its crystal structure. Canad. Mineral., 32, 855–63.Google Scholar
Fersman, A.E. (1908) Materialien zur Untersuchung der Zeolithe Russlands. I. Leonhardit und Laumontit aus der Umgebung von Simferopol (Krim). Tray. de Musée géol. Pierre le Grand pr. l'Acad. Imp. de Science St Pétersbourg, 2, 103–50. (Abstract in Zeits. Kristallogr., 50, 75-6.)Google Scholar
Fischer, K. (1966) Untersuchung der Kristallstruktur von Gmelinit. Neues Jahrb. Mineral Mh., 113.Google Scholar
Fischer, K. and Schramm, V. (1970) Crystal structure of gismondite, a detailed refinement. In Molecular Sieve Zeolites. Amer. Chem. Soc. Advances in Chemistry Series, 101, 250–8.Google Scholar
Franzini, M. and Perchiazzi, N. (1994) Portite discredited = natrolite and new data on “schneiderite“ (= laumontite). Eur. J. Mineral., 6, 351–3.CrossRefGoogle Scholar
Fuchs, J.N. (1816) Ueber die Zeolithe. (Schweigger's) Journ. für Chem. und Phys., 18, 129.Google Scholar
Galli, E. (1971) Refinement of the crystal structure of stilbite. Acta Crystallogr., B27, 833–41.CrossRefGoogle Scholar
Galli, E. (1975) Crystal structure refinement of mazzite. Rend. Soc. Ital. Mineral. Petrol., 31, 599612.Google Scholar
Galli, E. (1976) Crystal structure refinement of edingtonite. Acta Crystallogr., B32, 1623–7.CrossRefGoogle Scholar
Galli, E. (1980) The crystal structure of roggianite, a zeolite-like silicate. In Proe. 5th Int. Conf on Zeolites (Rees, L.V.C., ed.) Heyden, London, 205–13.Google Scholar
Galli, E. and Alberti, A. (1975 a) The crystal structure of stellerite. Bull. Soc. ft. Minéral Cristallogr., 98, 1118.Google Scholar
Galli, E. and Alberti, A. (1975 b) The crystal structure of barrerite. Bull. Soc. ft. Minéral. Cristallogr., 98, 331–40.Google Scholar
Galli, E. and Gottardi, G. (1966) The crystal structure of stilbite. Mineral. Petrog. Acta (Bologna), 12, 110.Google Scholar
Galli, E. and Loschi Ghittoni, A.G. (1972) The crystal chemistry of phillipsites. Amer. Mineral., 57, 1125–45.Google Scholar
Galli, E. and Rinaldi, R. (1974) The crystal chemistry of epistilbites. Amer. Mineral., 59, 1055-61.Google Scholar
Galli, E., Passaglia, E., Pongiluppi, D. and Rinaldi, R. (1974) Mazzite, a new Mineral, the natural counterpart of the synthetic zeolite fL Contrib. Mineral. Petrol., 45, 99105.CrossRefGoogle Scholar
Galli, E.,Gottardi, G. and Pongiluppi, D. (1979) The crystal structure of the zeolite merlinoite. Neues Jahrb. Mineral. Mh., 19.Google Scholar
Galli, E., Rinaldi, R. and Modena, C. (1981) Crystal chemistry of levynes. Zeolites, 1, 157-60.Google Scholar
Galli, E., Passaglia, E. and Zanazzi, P.F. (1982) Gmelinite: structural refinements of sodium-rich and calcium-rich natural crystals. Neues Jahrb. Mineral. Mh., 145-55.Google Scholar
Galli, E., Quartieri, S., Vezzalini, G. and Alberti, A. (1995) Boggsite and tschemichite-type zeolites from Mr. Adamson, Northern Victoria Land (Antarctica). Eur. J. Mineral., 7, 1029–32.CrossRefGoogle Scholar
Galli, E., Quartieri, S., Vezzalini, G. and Alberti, A. (1996) Gottardiite, a new high-silica zeolite from Antarctica: the natural counterpart of synthetic NU- 87. Eur. J. Mineral., 8, 687–93.CrossRefGoogle Scholar
Galli, E., Quartieri, S., Vezzalini, G., Alberti, A. and Franzini, M., (1997 a) Terranovaite from Antarctica: a new ‘pentasil’ zeolite. Amer. Mineral., 82, 423–9.CrossRefGoogle Scholar
Galli, E., Vezzalini, G., Quartieri, S., Alberti, A. and Franzini, M., (1997 b) Mutinaite, a new zeolite from Antarctica: the natural counterpart of ZSM-5. Zeolites, 19, 318–22.CrossRefGoogle Scholar
Gard, J.A. and Tait, J.M. (1972) The crystal structure of the zeolite offretite, K1.1Ca1.1Mg0.7[Si2.8Al5.2O36]15.2H2O. Acta Crystallogr., B28, 825–34.CrossRefGoogle Scholar
Gehlen, A.F. and Fuchs, J.N. (1813) Ueber Werner's Zeolith, Haüy's Mesotype und Stilbite. (Schweigger's) Journ. für Chem. und Phys., 8, 353–66.Google Scholar
Gismondi, C.G. (1817) Osservazioni sopra alcuni fossili particolari de’ contorni di Roma. Giornale Enciclopedico di Napoli, Anno XI, 2, 315.Google Scholar
Giuseppetti, G., Mazzi, F., Tadini, C., Galli, E. (1991) The revised crystal structure of roggianite: Ca2[Be(OH)2Al2Si4O13]<2.5H2O. Neues Jahrb. Mineral Mh., 307–14.Google Scholar
Gonnard, F. (1890) Sur l'offrétite, espéce minérale nouvelle. C. R. Acad. Sci., Paris, 111, 1002–3.Google Scholar
Gordon, E.K., Samson, S. and Kamb, W.B. (1966) Crystal structure of the zeolite paulingite. Science, 154, 1004-7.Google Scholar
Gottardi, G. and Alberti, A. (1974) Domain structure in garronite: a hypothesis. Mineral. Mag., 39, 898-9.CrossRefGoogle Scholar
Gottardi, G. and Galli, E. (1985) Natural Zeolites. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 409 pp.CrossRefGoogle Scholar
Gottardi, G. and Meier, W.M. (1963) The crystal structure of dachiardite. Zeits. Kristallogr., 119, 5364.CrossRefGoogle Scholar
Graham, R.P.D. (1918) On ferrierite, a new zeolitic Mineral, from British Columbia; with notes on some other Canadian Minerals. Trans. Roy. Soc. Canada, Series 3, 12, 185201.Google Scholar
Gramlich-Meier, R., Gramlich, V. and Meier, W.M. (1985) The crystal structure of the monoclinic variety of ferrierite. Amer. Mineral., 70, 619–23.Google Scholar
Haidinger, W. (1825) Description of edingtonite, a new Mineral species. Edinburgh J. Sci., 3, 316–20.Google Scholar
Harada, K., Iwamoto, S. and Kihara, K. (1967) Erionite, phillipsite and gonnardite in the amygdales of altered basalt from Maze, Niigata Prefecture, Japan. Amer. Mineral., 52, 1785–94.Google Scholar
Hassan, I. (1997) Feldspathoids and their relationships to zeolites. Kuwait Journal of Science and Engineering, 24, 163–87.Google Scholar
Haüy, R.J. (1797) Analcime. Journal des Mines, 5, 278–9.Google Scholar
Haüy, R.J. (1801) Traitd de minbralogie, 3. Chez Louis, Paris.Google Scholar
Haüy, R.J. (1809) Tableau comparatif des résultats de cristallographie et de l'analyse chimique relativement à la classification des minéraux. Courcier, Paris.Google Scholar
Hazen, R.M. and Finger, L.W. (1979) Polyhedral tilting: a common type of pure displacive phase transition and its relationship to analcite at high pressure. Phase Transitions, 1, 122.CrossRefGoogle Scholar
Heaney, P.J. and Veblen, D.R. (1990) A hightemperature study of the low-high leucite phase transition using the transmission electron microscope. Amer. Mineral, 75, 464–76.Google Scholar
Hesse, K.-F. (1983) Refinement of a partially disordered natrolite, Na2Al2Si3O10.2H2O. Zeits. Kristallogr., 163, 6974.Google Scholar
Hey, M.H. (1930) Studies on the zeolites. Part I. General review. Mineral. Mag., 22, 422–37.Google Scholar
Hey, M.H. (1960) Glottalite is chabazite. Mineral Mag., 32, 421–2.Google Scholar
Hey, M.H. (1962) An Index of Mineral Species and Varieties Arranged Chemically. 2nd ed. (and Appendices: 1963, 135 pp., and 1974, 168 pp.), British Museum, London. 728 pp.Google Scholar
Hintze, C. (1987) Handbuch der Mineralogie, 2, Von Veit, Leipzig.Google Scholar
Hori, H., Nagashima, K., Yamada, M., Miyawaki, R. and Marubashi, T. (1986) Ammonioleucite, a new Mineral from Tatarazawa, Fujioka, Japan. Amer. Mineral, 71, 1022–7.Google Scholar
How, H. (1864) On mordenite, a new Mineral from the trap of Nova Scotia. J. Chem. Soc., 17 (new series), 17, 100–4.Google Scholar
Howard, D.G. (1994) Crystal habit and twinning of garronite from Fara Vicentina, Vicenza (Italy). Neues Jahrb. Mineral. Mh., 91–6.Google Scholar
Howard, D.G., Tschernich, R.W., Smith, J.V. and Klein, G.L. (1990) Boggsite, a new high-silica zeolite from Goble, Columbia County, Oregon. Amer. Mineral., 75, 1200–4.Google Scholar
Huang, Wen-Hui, Tu, Shao-Hua, Wang, K'ung-Hai, Chao, Chun-Lin and Yu, Cheng-Chi (1958). Hsianghua-shih, a new beryllium Mineral. Ti-chih-yuehk'an, 7, 35. (Abstracts in Amer. Mineral., 44, 1327-8; 46, 244).Google Scholar
Hurlbut, C.S. Jr. (1957) Bikitaite LiAlSi2O6.H2O, a new Mineral from Southern Rhodesia. Amer. Mineral., 42, 792–7.Google Scholar
lbrahim, K. and Hall, A. (1995) New occurrences of diagenetic faujasite in the Quaternary tufts of northeast Jordan. Eur. J. Mineral, 7, 1129–35.CrossRefGoogle Scholar
Iijima, A. and Harada, K. (1969) Authigenic zeolites in zeolitic palagonite tufts on Oahu, Hawaii. Amer. Mineral, 54, 182–97.Google Scholar
Jameson, R. (1805) System of Mineralogy, 2, Bell and Bradfute, Edinburgh, U.K. (p. 539).Google Scholar
Joswig, W., Bartl, H. and Fuess, H. (1984) Structure refinement of scolecite by neutron diffraction. Zeits. Kristallogr., 166, 219–23.Google Scholar
Kamb, W.B. and Oke, W.C. (1960) Paulingite, a new zeolite, in association with erionite and filiform pyrite. Amer. Mineral., 45, 7991.Google Scholar
Kawahara, A. and Curien, H. (1969) La structure cristalline de l'érionite. Bull. Soc. ft. Minéral. Cristallog., 92, 250–6.Google Scholar
Kerr, I.S. and Williams, D.J. (1969) The crystal structure of yugawaralite. Acta Crystallogr., B25, 1183–90.CrossRefGoogle Scholar
Khomyakov, A.P., Sandomirskaya, S.M. and Malinovskii, Yu.A. (1980) Kalborsite, K6Bal4si6O20(Oh)4Cl, a new Mineral. Dokl. Aead. Nauk SSSR, 252, 1465–8 (in Russian).Google Scholar
Khomyakov, A.P., Cherepivskaya, G. Ye., Kurova, T.A. and Kaptsov, V.V. (1982) Amichit, K2Na2Al4Si4O16.5H2O, first find in the USSR. Dokl. Acad. Nauk SSSR, 263, 978–80 (in Russian).Google Scholar
Kim, Y. and Kirkpatrick, R.J. (1996) Application of MAS NMR spectroscopy to poorly crystalline materials: viséite. Mineral. Mag., 60, 957–62.CrossRefGoogle Scholar
Klaproth, M.H. (1803) Chemische Untersuchung des Natroliths. Ges. Naturforsehender Freunde zu Berlin, Neue Schriften, 4, 243–8.Google Scholar
Kocman, V., Gait, R.I. and Rucklidge, J. (1974) The crystal structure of bikitaite, Li[AlSi2O6].H2O. Amer. Mineral., 59, 71–8.Google Scholar
Koyama, K. and Takéuchi, Y. (1977) Clinoptilotite: the distribution of potassium atoms and its role in thermal stability. Zeits. Kristallogr., 145, 216–39.Google Scholar
Krause, W., Bernhardt, H.-J., Effenberger, H. and Giester, G. (1997) Tschötnerite, a copper-bearing zeolite from the Bellberg volcano, Eifel, Germany. (Abstract) Ber. Deutseh. Mineral. Ges., 1, 205.Google Scholar
Krogh Andersen, E., Danø, M. and Petersen, O.V. (1969) A tetragonal natrolite. Med. om Gronland, 181, 119.Google Scholar
Kviek, Å., Ståthl, K.and Smith, J.V. (1985) A neutron diffraction study of the bonding of zeolitic water in scolecite at 20 K. Zeits. Kristallogr., 171, 141–54.Google Scholar
Kvick, A., Artioli, G. and Smith, J.V. (1986) Neutron diffraction study of the zeolite yugawaralite at 13 K. Zeits. Kristallogr., 174, 265–81.CrossRefGoogle Scholar
Lacroix, A. (1896) Sur la gormardite. Bull. Soc. fr. Minéral., 19: 426–9.Google Scholar
Langhof, J. and Holstam, D. (1994) Boron-bearing chiavennite and other late-stage Minerals of the Proterozoic lithium-pegmatites of Utr, Stockholm, Sweden. Int. Mineral Ass., 16th Gen. Meet., Pisa, Italy. Abstr., 232.Google Scholar
Larsen, A. O., Asheim, A., Raade, G. and Taftø, J. (1992) Tvedalite, (Ca,Mn)4Be3Si4O17(OH)4-3H4O, a new Mineral from syenite pegrnatite in the Oslo Region, Norway. Amer. Mineral, 77, 438–43.Google Scholar
Leimer, H.W. and Slaughter, M. (1969) The determination and refinement of the crystal structure ofyugawaralite. Zeits. Kristallogr., 130, 88111.CrossRefGoogle Scholar
Lengauer, C.L., Giester, G. and Tillmanns, E. (1997) Mineralogical characterization of paulingite from Vinarická Hora, Czech Republic. Mineral. Mag., 61, 591606.CrossRefGoogle Scholar
Leonhard, K. C. von (1817) Die Zeagonit ein neues Mineral vom Capo do Bove bei Rom. Taschenbuch Jür die gesarnmte Mineralogie mit Hinsicht auf die neuesten Entdeckungen, 11, 164–8. (Extracted from Gismondi, 1817, with footnotes added).Google Scholar
Leonhard, K. C. von (1821) Handbuch der Oryktognosie. Mohr & Winter, Heidelberg. p. 448.Google Scholar
Levinson, A. A. (1966) A system of nomenclature for rare-earth Minerals. Amer. Mineral., 51, 152–8.Google Scholar
Lévy, A. (1825) Descriptions of two new Minerals. Annals of Philosophy, new ser., 10, 361–3.Google Scholar
Lo, H.-J. and Hsieh, Y.-L. (199l) High potassium natural mordenite and the chemical variation of mordenite. Proc. Geol. Soc. China (Taiwan), 34, 305–12.Google Scholar
Lo, H.-J., Song, S.-R. and Wen, S.-B. (1991) High potassium mordenite in the andesite from the Coastal Range, Eastern Taiwan. Proc. Geol. Soc. China (Taiwan), 34, 293304.Google Scholar
Lucchetti, G., Massa, B. and Penco, A.M. (1982) Strontian heulandite from Campegli (Eastern Ligurian ophiolites, Italy). Neues Jahrb. Mineral. Mh., 541–50.Google Scholar
Malinovskii, Yu.A. (1984) The crystal structure of Kgmelinite. Kristallografiya, 29, 426–30 (in Russian).Google Scholar
Malinovskii, Yu.A. and Belov, N.V. (1980) Crystal structure of kalborsite. Dokl. Acad. Nauk SSSR, 252, 611–5 (in Russian).Google Scholar
Mason, B.H. (1957) Gonnardite (ranite) from Langesundsfjord. Norsk geol. Tidsskr., 37, 435-7.Google Scholar
Mazzi, F. and Galli, E. (1978) Is each analcime different? Amer. Mineral., 63, 448–60.Google Scholar
Mazzi, F. and Galli, E. (1983) The tetrahedral framework of chabazite. Neues Jahrb. Mineral. Mh., 461–80.Google Scholar
Mazzi, F., Galli, E. andGottardi, G. (1976) The crystal structure of tetragonal teucite. Amer. Mineral., 61, 108–15.Google Scholar
Mazzi, F., Galli, E. and Gottardi, G. (1984) Crystal structure refinement of two tetragonal edingtonites. Neues Jahrb. Mineral. Mh., 373–82.Google Scholar
Mazzi, F., Larsen, A.O.,Gottardi, G. and Galli, E. (1986) Gonnardite has the tetrahedral framework of natrolite: experimental proof with a sample from Norway. Neues Jahrb. Mineral. Mh., 219–28.Google Scholar
McConnell, D. (1964) A zinc phosphate analogue of analcime: kehoeite. Mineral. Mag., 33, 799803.Google Scholar
McCusker, L.B., Baerlocher, C. and Nawaz, R. (1985) Rietveld refinement of the crystal structure of the new zeolite Mineral gobbinsite. Zeits. Kristallogr., 171, 281–9.Google Scholar
Meier, W.M. (1961) The crystal structure of mordenite (ptilolite). Zeits. Kristallogr., 115, 439–50.CrossRefGoogle Scholar
Meier, W.M., Olson, D.H. and Baerlocher, C. (1996) Atlas of zeolite structure types. Zeolites, 17, 1230.Google Scholar
Men'shikov, Yu.P. (1984) Perlialite, K9Na(Ca,Sr) [Al12Si24O42].15H2O, a new potassian zeolite from the Khibina Massif. Zap. Vses. Mineral. Obshch., 113, 607–12 (in Russian).Google Scholar
Men'shikov, Yu.P., Denisov, A.P., Uspenskaya, E.I. and Lipatova, E.A. (1973) Lovdarite, a new hydrous beryllosilicate of alkalies. Doklady Akademii Nauk SSSR, 213, 429–32 (in Russian).Google Scholar
Merkle, A.B. and Slaughter, M. (1968) Determination and refinement of the structure of heulandite. Amer. Mineral, 53, 1120–38.Google Scholar
Merlino, S. (1972) Orizite discredited (= epistilbite). Amer. Mineral, 57, 592–3.Google Scholar
Merlino, S. (1974) The crystal structure of wenkite. Acta Crystallogr., B30, 1262–8.CrossRefGoogle Scholar
Merlino, S. (1990) Lovdarite, K4Na12 (Be8Si28O72)- 18H2O, a zeolite-like Mineral: structural features and OD character. Eur. J. Mineral,., 2 809–17.CrossRefGoogle Scholar
Merlirto, S., Galli, E. and Alberti, A. (1975) The crystal structure of levyne. Tschermaks Min. Petr. Mitt., 22, 117-29.Google Scholar
Minato, H. and Takano, T. (1964) An occurrence of potassium clinoptilolite from Itaya, Yamagata Prefecture, Japan. J. Clay Sci. Soc. Japan, 4, 1222 (in Japanese with English abstract).Google Scholar
Mizota, T., Shibuya, G., Shimazu, M. and Takeshita, Y. (1974) Mineralogical studies on levyne and erionite from Japan. Mere. Geol. Soc. Japan, 11, 283–90.Google Scholar
Morozewicz, J. (1909) Über Stellerit, ein neues ZeolithMineral. Bull. International de l'Acadbmie des Sciences de Cracovie, 1909, 344–59.Google Scholar
Mumpton, F.A. (1960) Clinoptilolite redefined. Arner. Mineral., 45, 351–69.Google Scholar
Nakajima, W. (1983) Disordered wairakite from Hikihara, Haga Town, Hyfgo Prefecture. Bull. Faculty of Education, Kobe University, 70, 3946.Google Scholar
Nawaz, R. (1983) New data on gobbinsite and garronite. Mineral. Mag., 47, 567-8.Google Scholar
Nawaz, R. (1984) New data on cowlesite from Northern Ireland. Mineral. Mag., 48, 565–6.CrossRefGoogle Scholar
Nawaz, R. and Malone, J.F. (1982) Gobbinsite, a new zeolite Mineral from Co. Antrim, N. Ireland. Mineral. Mag., 46, 365–9.CrossRefGoogle Scholar
Nickel, E.H. and Mandarino, J.A. (1987) Procedures involving the IMA Commission on New Minerals and Mineral Names, and guidelines on Mineral nomenclature. Amer. Mineral., 72, 1031–42.Google Scholar
Nørnberg, P. (1990) A potassium-rich zeolite in soil development on Danian chert. Mineral. Mag., 54, 91–4.CrossRefGoogle Scholar
Ogihara, S. and Iijima, A. (1990) Exceptionally K-rich clinoptilolite – heulandite group zeolites from three offshore boreholes off northern Japan. Eur. J. Mineral, 2, 819–26.CrossRefGoogle Scholar
Passaglia, E. (1969 a) Le zeoliti di Albero Bassi (Vicenza). Periodico Mineral. 38, 237–43.Google Scholar
Passaglia, E. (1969 b) Roggianite, a new silicate Mineral. Clay Minerals, 8, 107–11.CrossRefGoogle Scholar
Passaglia, E. (1970) The crystal chemistry of chabazites. Amer. Mineral., 55, 1278–301.Google Scholar
Passaglia, E. (1975) The crystal chemistry of mordenites. Contrib. Mineral. Petrol., 50, 6577.CrossRefGoogle Scholar
Passaglia, E. and Pongiluppi, D. (1974) Sodian stellerite from Capo Pula, Sardegna. Lithos, 7, 6973.CrossRefGoogle Scholar
Passaglia, E. and Pongiluppi, D. (1975) Barrerite, a new natural zeolite. Mineral Mag., 40, 208.CrossRefGoogle Scholar
Passaglia, E. and Sacerdoti, M. (1982) Crystal structural refinement of Na-exchanged stellerite. Bull. Mineral., 105, 338–42.Google Scholar
Passaglia, E. and Tagliavini, A. (1994) Chabazite-offretite epitaxial overgrowths in cornubianite from Passo Forcel Rosso, Adamello, Italy. Eur. J. Mineral, 6, 397405.CrossRefGoogle Scholar
Passaglia, E. and Vezzalini, G. (1985) Crystal chemistry of diagenetic zeolites in volcanoclastic deposits of Italy. Contrib. Mineral Petrol., 90, 190–8.CrossRefGoogle Scholar
Passaglia, E. and Vezzalini, G. (1988) Roggianite: revised chemical formula and zeolitic properties. Mineral. Mag., 52, 201–6.CrossRefGoogle Scholar
Passaglia, E., Galli, E. and Rinaldi, R. (1974) Levynes and erionites from Sardinia, Italy. Contrib. Mineral Petrol., 43, 253–9.CrossRefGoogle Scholar
Passaglia, E., Pongiluppi, D. and Rinaldi, R. (1977) Merlinoite, a new Mineral of the zeolite group. Neues Jahrb. Mineral Mh., 355–64.Google Scholar
Passaglia, E., Pongiluppi, D. and Vezzalini, G. (1978 a) The crystal chemistry of gmelinites. Neues Jahrb. Mineral Mh., 310–24.Google Scholar
Passaglia, E., Galli, E., Leoni, L. and Rossi, G. (1978 b) The crystal chemistry of stilbites and stellerites. Bull Mineral., 101, 368–75.Google Scholar
Passaglia, E., Vezzalini, G. and Carnevali, R. (1990) Diagenetic chabazites and phillipsites in Italy: crystal chemistry and genesis. Eur. J. Mineral, 2, 827–39.CrossRefGoogle Scholar
Passaglia, E., Artioli, G., Gualtieri, A. and Carnevali, R. (1995) Diagenetic mordenite from Ponza, Italy. Eur. J. Mineral, 7, 429–38.CrossRefGoogle Scholar
Passaglia, E., Artioli, G. and Gualtieri, A. (1998) The crystal chemistry of the zeolites erionite and offretite. Amer. Mineral, 83,, 577–89.CrossRefGoogle Scholar
Peacor, D.R. (1968) A high temperature single crystal diffractometer study of leucite, (K,Na)AISi2O6 . Zeits. Kristallogr., 127, 213–24.CrossRefGoogle Scholar
Peacor, D.R., Dunn, P.J., Simmons, W.B., Tillmanns, E. and Fischer, R.X. (1984) Willhendersonite, a new zeolite isostructural with chabazite. Amer. Mineral., 69, 186–9.Google Scholar
Peacor, D.R., Dunn, P.J., Simmons, W.B., Wicks, F.J. and Raudsepp, M. (1988) Maricopaite, a new hydrated Ca-Pb, zeolite-like silicate from Arizona. Canad. Mineral., 26, 309–13.Google Scholar
Pekov, I.V. and Chukanov, N.V. (1996) New data on kalborsite. Zap. Vses. Mineral. Obshch., 125(4), 55–9 (in Russian).Google Scholar
Perrotta, A.J. (1967) The crystal structure of epistilbite. Mineral. Mag., 36, 480–90.Google Scholar
Perrotta, A.J. and Smith, J.V. (1964) The crystal structure of brewsterite, (Sr,Ba,Ca)2 (Al4Si12O32).10H2O. Acta Crystallogr., 17, 857–62.CrossRefGoogle Scholar
Pirsson, L. V. (1890) On mordenite. Amer. J. Sci., series 3, 40, 232–7.CrossRefGoogle Scholar
Pluth, J.J. and Smith, J.V. (1990) Crystal structure of boggsite, a new high-silica zeolite with the first three-dimensional channel system bounded by both 12- and 10-rings. Amer. Mineral., 75, 501–7.Google Scholar
Pluth, J.J., Smith, J.V., Howard, D.G. and Tschernich, R.W. (1989) Boggsite; the first three-dimensional channel system with both 12-and 10-rings. In Zeolites for the Nineties, Recent Research Reports (Jansen, J.C., Moscou, L. and Post, M.F.M., eds.), 8th Int. Zeolite Conf., Amsterdam, p. 111–2.Google Scholar
Quartieri, S. and Vezzalini, G. (1987) Crystal chemistry of stilbites: structure refinements of one normal and four chemically anomalous samples. Zeolites, 7, 163–70.CrossRefGoogle Scholar
Quartieri, S., Vezzalini, G. and Alberti, A. (1990) Dachiardite from Hokiya-dake: evidence of a new topology. Eur. J. Mineral., 2, 187–93.CrossRefGoogle Scholar
Raade, G. (1996) Minerals originally described from Norway. Including notes on type material. Norsk Bergver,ksmuseums Skriftserie, 11, 107 pp.Google Scholar
Raade, G., Åmli, R., Mladeck, M.H., Din, V.K., Larsen, A.O. and sheim, A. (1983) Chiavennite from syenite pegmatites in the Oslo region, Norway. Amer. Mineral., 68, 628–33.Google Scholar
Rastsvetaeva, R.K., Rekhlova, O.Y., Andrianov, V. and Malinovskii, Y.A. (1991) Crystal structure of hsianghualite. Doklady Akademii Nauk SSSR, 316, 624–8 (in Russian).Google Scholar
Rinaldi, R. (1976) Crystal chemistry and structural epitaxy of offretite-erionite from Sasbach, Kaiserstuhl. Neues Jahrb. Mineral Mh., 145–56.Google Scholar
Rinaldi, R. and Vezzalini, G. (1985) Gismondine; the detailed x-ray structure refinement of two natural samples. In Zeolites; synthesis, structure, technology and application (Držaj, B., Hočevar, S. and Pejovnik, S., eds.), Elsevier, p. 481–92.Google Scholar
Rinaldi, R., Pluth, J.J. and Smith, J.V. (1974) Zeolites of the phillipsite family. Refinement of the crystal structures of phillipsite and harmotome. Acta Crystallogr., B30, 2426–33,CrossRefGoogle Scholar
Rinaldi, R., Smith, J.V. and Jung, G. (1975 a) Chemistry and paragenesis of faujasite, phillipsite and offretite from Sasbach, Kaiserstuhl, Germany. Neues Jahrb. Mineral. Mh., 433–43.Google Scholar
Rinaldi, R., Pluth, J.J. and Smith, J.V. (1975 b) Crystal structure of mazzite dehydrated at 600°C Acta Crystallogr., B31, 1603–8.CrossRefGoogle Scholar
Robinson, G.W. and Grice, J.D. (1993) The barium analog of brewsterite from Harrisville, New York. Canad. Mineral, 31, 687–90.Google Scholar
Rose, G. (1826). Ueber den Epistilbit, eine neue zur Familie der Zeolithe gehörige Mineralgattung. (Poggendorff's) Annalen der Physik und Chemic (Leipzig), 6, 183–90.CrossRefGoogle Scholar
Ross, C.S. and Shannon, E.V. (1924) Mordenite and associated Minerals from near Challis, Custer County, Idaho. Proe. US Nat. Museum, 64 (19), 119. CrossRefGoogle Scholar
Ross, M., Flohr, M.J.K. and Ross, D.R. (1992) Crystalline solution series and order-disorder within the natrolite Mineral group. Amer. Mineral., 77, 685703.Google Scholar
Rouse, R.C. and Peacor, D.R. (1986) Crystal structure of the zeolite Mineral goosecreekite, CaAl2Si6O16.5H2O. Amer. Mineral., 71, 1494–501.Google Scholar
Rouse, R.C. and Peacor, D.R. (1994) Maricopaite, an unusual lead calcium zeolite with an interrupted mordenite-like framework and intrachannel Pb4 tetrahedral clusters. Amer. Mineral, 79, 175–84.Google Scholar
Rouse, R.C., Peaeor, D.R., Dunn, P.J., Campbell, T.J., Roberts, W.L., Wicks, F. . and Newbury, D. (1987) Pahasapaite, a beryllophosphate zeolite related to synthetic zeolite rho, from the Tip Top Pegrnatite of South Dakota. Neues Jahrb. Mineral Mh., 433-40.Google Scholar
Rouse, R.C., Peacor, D.R. and Merlino, S. (1989) Crystal structure of pahasapaite, a beryllophosphate Mineral with a distorted zeolite rho framework. Amer. Mineral, 74, 1195–202.Google Scholar
Rouse, R.C., Dunn, P.J., Grice, J,D., Schlenker, J.L. and Higgins, J.B. (1990) Montesommaite, (K,Na)9Al9Si23O64.10H2O, a new zeolite related to merlinoite and the gismondine group. Amer. Mineral., 75, 1415–20.Google Scholar
Rüdinger, B., Tillmanns, E. and Hentschel, G. (1993) Bellbergite – a new Mineral with the zeolite structure type EAB. Mineral. Petrol., 48, 147–52.CrossRefGoogle Scholar
Sakurai, K. and Hayashi, A. (1952) “Yugawaralite”, a new zeolite. Sci. Rep. Yokohama Nat. Univ., Ser. II, 1, 69–77.Google Scholar
Sarp, H., Deferne, J., Bizouard, H. and Liebich, B.W. (1979) La parthéite, CaAl2Si2O8.2H2O, un nouveau silicate naturel d'aluminium et de calcium. Schweiz. Mineral, petrog. Mitt., 59, 513.Google Scholar
Schaller, W.T. (1923) Ptilolite and related zeolites. In: Proceedings of Societies (Wherry, E.T., ed.). Amer. Mineral., 8, 93-4.Google Scholar
Schaller, W.T. (1932) The mordenite-ptilolite group; clinoptilolite, a new species. Amer. Mineral., 17, 128–34.Google Scholar
Schlenker, J.L., Pluth, J.J. and Smith, J.V. (1977 a) Refinement of the crystal structure of brewsterite, Ba0.5Sr1.5Al4Si12O32.10H2O. Acta Crystallogr., B33, 2907–10.CrossRefGoogle Scholar
Schlenker, J.L., Pluth, J.J. and Smith, J.V. (1977 b) Dehydrated natural erionite with stacking faults of the offretite type. Acta Crystallogr., B33, 3265–8.CrossRefGoogle Scholar
Schröpfer, L. and Joswig, W. (1997) Structure analyses of a partially dehydrated synthetic Ca-garronite single crystal under different T, PH2O conditions. Eur. J. Mineral., 9, 5365.CrossRefGoogle Scholar
Seki, Y. (1971) Wairakite-analcime solid solution as an indicator of water pressures in low-grade metamorphism. J. Geol. Soc. Japan, 77, 667–74.CrossRefGoogle Scholar
Seki, Y. and Oki, Y. (1969) Wairakite-analcime solid solutions from low-grade metamorphic rocks of the Tanzawa Mountains, Central Japan. Mineral J., 6, 3645.CrossRefGoogle Scholar
Sheppard, R.A. and Fitzpatrick, J.J. (1989) Phillipsite from silicic tufts in saline, alkaline-lake deposits. Clays and Clay Minerals, 37, 243–7.CrossRefGoogle Scholar
Sheppard, R.A. and Gude, A.J., 3d (1969 a) Diagenesis of tufts in the Barstow Formation, Mud Hills, San Bemardino County, California. US Geol. Surv. Prof. Paper 634, 135.Google Scholar
Sheppard, R.A. and Gude, A.J., 3d (1969 b) Chemical composition and physical properties of the related zeolites offretite and erionite. Amer. Mineral., 54, 875–86.Google Scholar
Sheppard, R.A., Gude, A.J., 3d and Munson, E.L. (1965) Chemical composition of diagenetic zeolites from tuffaceous rocks of the Mojave Desert and vicinity, California. Amer. Mineral., 50, 244–9.Google Scholar
Sheppard, R.A., Gude, A.J., 3d and Griffin, J.J. (1970) Chemical composition and physical properties of phillipsite from the Pacific and Indian Oceans. Amer. Mineral., 55, 2053–62.Google Scholar
Smith, J.V. (1988) Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem. Rev., 88, 149–82.CrossRefGoogle Scholar
Smith, J.V., Knowles, C.R. and Rinaldi, R. (1964) Crystal structures with a chabazite framework. III Hydrated Ca-chabazite at +20 and -150°C Acta Crystallogr., 17, 374–84.CrossRefGoogle Scholar
Smith, J. V., Pluth, J. J., Boggs, R. C. and Howard, D. G. (1991) Tschernichite, the Mineral analogue of zeolite Beta. J. Chem. Soc., Chem. Communications, 363–4.CrossRefGoogle Scholar
Ståhl, K., Kvick, Å. and Smith, J.V. (1990) Thomsonite, a neutron diffraction study at 13 K. Acta Crystallogr., C46, 1370–3.Google Scholar
Steiner, A. (1955) Wairakite, the calcium analogue of analcime, a new zeolite Mineral. Mineral. Mag., 30, 691–8.Google Scholar
Strunz, H. (1956) Die Zeolithe Gmelinit, Chabasit, Levyn (Phakolith, Herschelit, Seebachit, Offretit). Neues Jahrb. Mineral. Mh., 250–9.Google Scholar
Strunz, H. (1978) Mineralogische Tabellen, 7th edition. Akademische Verlagges., Leipzig.Google Scholar
Stuckenschmidt, E., Fuess, H. and Kvick, Å. (1990) Investigation of the structure of harmotome by X-ray (293 K, 100 K) and neutron diffraction (15 K). Eur. J. Mineral., 2, 861–74.CrossRefGoogle Scholar
Takéuchi, Y.,Mazzi, F., Haga, N. and Galli, E. (1979) The crystal structure of wairakite. Amer. Mineral, 64, 9931001.Google Scholar
Taylor, W.H. (1930) The structure of analcite (NaAlSi2O6.H2O). Zeits. Kristallogr., 74, 119.Google Scholar
Taylor, W.H. and Jackson, R. (1933) The structure of edingtonite. Zeits. Kristallogr., 86, 5364.Google Scholar
Tazzoli, V., Domeneghetti, M.C.,Mazzi, F. and Cannillo, E. (1995) The crystal structure of chiavermite. Eur. J. Mineral, 7, 1339–44.CrossRefGoogle Scholar
Teertstra, D.K. and Černý, P. (1995) First natural occurrences of end-member pollucite: A product of low-temperature reequilibration. Eur. J. Mineral, 7, 1137-48.Google Scholar
Teertstra, D.K. and Dyer, A. (1994) The informal discreditation of “doranite” as the magnesium analogue of analcime. Zeolites, 14, 411–3.CrossRefGoogle Scholar
Teertstra, D. K., Sherriff, B. L., Xu, Z. and Černý, P. (1994) MAS and DOR NMR study of Al–Si order in the analcime–pollucite series. Canad. Mineral, 32, 6980.Google Scholar
Thugutt, S.J. (1933) O ptylocie z Mydzka na Wolyniu – Sur la ptilolite de Mydzk en Volhynie. Arch. Mineral. Soc. Sci. Varsovie, 9, 99102 (Polish), 103-4 (French résumé). (Mineral. Abstr., 6, 129).Google Scholar
Tillmanns, E., Fischer, R.X. and Baur, W.H. (1984) Chabazite-type framework in the new zeolite willhendersonite, KCaAl3Si3O12.5H2O. Neues Jahrb. Mineral Mh., 547–58.Google Scholar
Tschernich, R.D. and Wise, W.S. (1982) Paulingite: variations in composition. Amer. Mineral., 67, 799803.Google Scholar
Ueno, T. and Hanada, K. (1982) Chemical compositions and geneses of zeolites from Tsuyazaki, Fukuoka Prefecture, Japan. J. Mineral. Soc. Japan, 15, 259–72. (In Japanese with English abstract).Google Scholar
Vaughan, P.A. (1966) The crystal structure of the zeolite ferrierite. Acta Crystallogr., 21, 983–90.CrossRefGoogle Scholar
Vezzalini, G. (1984) A refinement of Elba dachiardite: opposite acentric domains simulating a centric structure. Zeits. Kristallogr., 166, 6371.Google Scholar
Vezzalini, G. and Oberti, R. (1984) The crystal chemistry of gismondines: the non-existence of K-rich gismondines. Bull. Minéral., 107, 805–12.CrossRefGoogle Scholar
Vezzalini, G., Quartieri, S. and Passaglia, E. (1990) Crystal structure of a K-rich natural gmelinite and comparison with the other refined gmelinite samples. Neues Jahrb. Mineral. Mh., 504–16.Google Scholar
Vezzalini, G., Artioli, G. and Quartieri, S. (1992) The crystal chemistry of cowlesite. Mineral. Mag., 56, 575–9.CrossRefGoogle Scholar
Vezzalini, G., Quartieri, S. and Galli, E. (1996) Relazioni strutturali nelle zeoliti con topologia CHA alia tuee gel ritrovamento di una Ca-willhendersonite. Programma XXVI Congresso Nazionale della Associazione ltaliana di Cristallografia. Alessandria, p. 91.Google Scholar
Vezzalini, G., Quartieri, S. and Galli, E. (1997 a) Occurrence and crystal structure of a Ca-pure willhendersonite. Zeolites, 19, 75–9.CrossRefGoogle Scholar
Vezzalini, G., Quartieri, S., Galli, E., Alberti, A., Cruciani, G. and Kvick, A. (1997 b) Crystal structure of the zeolite mutinaite, the natural analogue of ZSM-5. Zeolites, 19, 323–5.CrossRefGoogle Scholar
Villarroel, H.S. (1983) Sobre la existencia de otras variedades de estellerita y una forma de reconocerlas. Anais Academia Brasileira de Ciencias, 55, 8791.Google Scholar
Walker, G.P.L. (1962) Garronite, a new zeolite, from Ireland and Iceland. Mineral Mag., 33, 173–86.Google Scholar
Walter, F. (1992) Weinebeneite, CaBe3(PO4)2 (OH)2.4H2O, a new Mineral species: Mineral data and crystal structure. Eur. J. Mineral, 4, 1275–83.CrossRefGoogle Scholar
Wenk, H.-R. (1973) The structure of wenkite. Zeits. Kristallogr., 137, 113–26.Google Scholar
White, J.S. and Erd, R.C. (1992) Kehoeite is not a valid species. Mineral. Mag., 56, 256–8.CrossRefGoogle Scholar
Wise, W.S. (1982) New occurrence of faujasite in southeastern California. Amer. Mineral, 67, 794–8.Google Scholar
Wise, W.S. and Tschernich, R.W. (1975) Cowlesite, a new Ca-zeolite. Amer. Mineral., 60, 951–6.Google Scholar
Wise, W.S. and Tschernich, R.W. (1976) Chemical composition of ferrierite. Amer. Mineral, 61, 60–6.Google Scholar
Wyart, J. (1938) Étude sur la leucite. Bull. Soc. fr. Minéral., 61, 228–38.Google Scholar
Yang, P. and Armbruster, T. (1996) (010) disorder, partial Si,AI ordering, and Ca distribution in triclinic (C1) epistilbite. Eur. J. Mineral., 8, 263–71.CrossRefGoogle Scholar

Reference

Nickel, E. H. (1992) Solid solutions in Mineral nomenclature. Mineral. Mag., 56, 127–30.CrossRefGoogle Scholar

References

Armbruster, T. and Kohler, T. (1992) Re- and dehydration of laumontite: a single-crystal X-ray study at 100 K. Neues Jahrb. Mineral. Mh., 385–97.Google Scholar
Blum, J.R. (1843) Leonhardit, ein neues Mineral. (Poggendorff's) Annalen der Physik und Chemie (Leipzig), 59, 336–9.CrossRefGoogle Scholar
Černý, P., Rinaldi, R. and Surdam, R.C. (1977) Wellsite and its status in the phillipsite-harmotome group. Neues Jahrb. Mineral. Abh., 128, 312–20.Google Scholar
Coombs, D.S. (1952) Cell size, optical properties and chemical composition of laumontite and leonhardite. Amer. Mineral, 37, 812–30.Google Scholar
Delffs, W. (1843) Analyse des Leonhardits. (Poggendorff's) Annalen der Physik und Chemie (Leipzig), 59, 339–42.CrossRefGoogle Scholar
Doelter, C. (1921) Handbuch der Mineralchemie, II, 3. Verlag Theodor Steinkopff; Dresden, Leipzig; 472 pp.CrossRefGoogle Scholar
Fersman, A.E. (1908) Materialien zur Untersuchung der Zeolithe Russlands. I. Leonhardit und Laumontit aus der Umgebung yon Simferopol (Krim). Tray. du Musée géol. Pierre le Grand pr. l'Acad, lmp. de Science St Pétersbourg, 2: 103–50. (Abstract in Zeits. Kristallogr., 50, 75-6.)Google Scholar
Galli, E. (1972) La phillipsite barifera (“wellsite“) di M. Calvarina (Verona). Per. Mineral., 41, 2333.Google Scholar
Gellens, R.L., Price, G.D. and Smith, J.V. (1982) The structural relation between svetlozarite and dachiardite. Mineral. Mag., 45, 157–61.CrossRefGoogle Scholar
Hausmann, J.F.L. (1847) Handbuch der Mineralogie, 2nd ed., 2, 1600.Google Scholar
Lévy, A., (1825) Descriptions of two new Minerals. Annals of Philosophy, new ser., 10, 361–3.Google Scholar
Maleev, M.N. (1976) Svetlozarite, a new high-silica zeolite. Zap. Vses. Mineral. Obshch., 105, 449–53 (in Russian).Google Scholar
Mason, B. (1962) Herschelite – a valid species? Amer. Mineral, 47, 985–7,Google Scholar
Passaglia, E. (1970) The crystal chemistry of chabazites. Amer. Mineral, 55, 1278–301.Google Scholar
Pipping, F. (1966) The dehydration and chemical composition of laumontite. Min. Soc. lndia, 1MA Volume, 159–66.Google Scholar
Pratt, J.H. and Foote, H.W. (1897) On wellsite, a new Mineral. Amer. J. Sci., Ser. 4, 3 (153), 443–8.CrossRefGoogle Scholar
Sheppard, R.A., Gude, A.J. and Edson, G.M. (1978) Bowie zeolite deposit, Cochise and Graham Counties, Arizona. In Natural Zeolites (Sand, L.B. and Mumpton, F.A., eds.), Pergamon, Oxford, pp. 319–28.Google Scholar
Stolz, J., and Armbruster, T. (1997) X-ray single-crystal structure refinement of a Na,K-rich laumontite, originally designated ‘primary leonhardite'. Neues Jahrb. Mineral Mh., 131–4.Google Scholar
Strunz, H. (1956) Die Zeolithe Gmelinit, Chabasit, Levyn (Phakolith, Herschelit, Seebachit, Offretit). Neues Jahrb. Mineral. Mh., 250–9.Google Scholar
Wuest, T. and Armbruster, T. (1997) Type locality leordaardite: a single-crystal X-ray study at 100K. Program and Abstracts, Zeolite ‘97, 5th lnt. Conference on the Occurrence, Properties, and Utilization of Natural Zeolites, lschia, ltaly, p. 327–8.Google Scholar