Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T23:07:57.242Z Has data issue: false hasContentIssue false

Single-crystal X-ray diffraction, EMPA, FTIR and X-ray photoelectron spectroscopy study of narsarsukite from Murun Massif, Russia

Published online by Cambridge University Press:  02 January 2018

E. Schingaro
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, Bari I-70125, Italy
E. Mesto*
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, Bari I-70125, Italy
M. Lacalamita
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, Bari I-70125, Italy
F. Scordari
Affiliation:
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro”, via E. Orabona 4, Bari I-70125, Italy
E. Kaneva
Affiliation:
Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk-33, 664033, Russia
F. N. Vladykin
Affiliation:
Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk-33, 664033, Russia

Abstract

A crystal chemical study of narsarsukite from the Murun alkaline massif, Russia has been carried out combining single-crystal X-ray diffraction, electron microprobe analyses, micro-Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The narsarsukite single crystals are tetragonal (space group I4/m) with unit-cell parameters: 10.7140(1) ≤ a ≤ 10.7183(2) Å and 7.9478(1) ≤ c ≤ 7.9511(1) Å. The XPS analysis showed that Fe occurs in the mineral as Fe3+, whereas the FTIR spectrum showed that the sample studied is anhydrous. The average crystal chemical formula of the Murun narsarsukite is: Na2.04K0.01(V0.015+Ti0.74Zr0.01Al0.01Fe0.223+Mg0.01)1.00Si4.00(O10.74F0.23OH0.03)11.00. Structural disorder at octahedral and interstitial sites was modelled and also discussed in consideration of the main substitutional mechanism Ti4+ + O2– ↔ Fe3+ + (F, OH) active in the structure of the mineral.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beran, A., Libowitzky, E. and Armbruster, T (1996) A single-crystal infrared spectroscopic and X-ray diffraction study of untwinned San Benito perovskite containing OH groups. The Canadian Mineralogist, 34, 803809.Google Scholar
Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487–00.CrossRefGoogle Scholar
Birkett, T.C., Trzcienski, W.E. and Stirling, J.A.R. (1996) Occurrence and compositions of some Ti-bearing minerals in the Strange Lake intrusive complex, Quebec-Labrador boundary. The Canadian Mineralogist, 34, 779801.Google Scholar
Bruker (2003a) APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Bruker (2003b) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Chukanov, N.V and Pekov, I.V (2005) Heterosilicates with tetrahedral-octahedral frameworks: mineralogical and crystal-chemical aspects. Pp. 105143 in: Micro-and Mesoporous mineral phases (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy & Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia.CrossRefGoogle Scholar
Chukanov, N.V., Pekov, I.V., Rastsvetaeva, R.K. and Nekrasov, A.N. (1999) Labuntsovite; solid solutions and features of the crystal structure. The Canadian Mineralogist, 37, 901909.Google Scholar
Chukanov, N.V., Pekov, I.V and Khomyakov, A.P. (2002) Recommended nomenclature for labuntsovite-group minerals. European Journal of Mineralogy, 14, 165173.CrossRefGoogle Scholar
Clerici, M.G., Bellussi, G. and Romano, U. (1997) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. Journal of Catalysis, 129, 159167.CrossRefGoogle Scholar
Dickinson, P., Fenn, M., Foster, H., Gadsby, G., Greenslade, R., Haak, P., Hadley, M., Lesley, R., Maitland, G., McCourt, B. et al. (2011) Thermo advantage v.5. 31, 19992011. Thermo Fisher Scientific.Google Scholar
Flink, G. (1899) Part I. On the minerals from Narsarsuk on the Firth of Tunugdliarfik in South Greenland. Pp. 718 in: Undersøgelser af Mineralier fra Julianehaab indsamlet af G. Flink 1897 (G. Flink, O.B. Bøgghild and C. Winther, editors). Meddelelser om Grønland, 24.Google Scholar
Gagne, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gibbs, G.V., Hamil, M.M. and Louisnathan, S.J. (1972) Correlation between Si-O bond length, Si-O-Si angle and bond overlap populations calculated using extended Hückel molecular orbital theory. American Mineralogist, 57, 15781613.Google Scholar
Graham, W.A.P. (1935) An occurrence of narsarsukite in Montana. American Mineralogist, 20, 598601.Google Scholar
Grigor'eva, A.A., Zubkova, N.V., Pekov, I.V., Kolitsch, U., Pushcharovsky, D.Y., Vigasina, M.F., Giester, G., Dordevic, T., Tillmanns, E. and Chukanov, N.V. (2011) Crystal chemistry of elpidite from Kahn Bogdo (Mongolia) and its K-and Rb-exchanged forms. Crystallography Reports, 56, 832841.CrossRefGoogle Scholar
Grosvenor, A.P., Kobe, B.A., Biesinger, M.C. and McIntyre, N.S. (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 36, 15641574.CrossRefGoogle Scholar
Guascito, M.R., Mesto, E., Malitesta, C., Picca, R.A. and Scordari, F. (2014) The effect of XPS background removing method on the appraisal of Ti and Fe: the case of phlogopites and brookite. American Mineralogist, 99, 139148.CrossRefGoogle Scholar
Kahlenberg, V., Manninger, T., Perfler, L. and Többens, D.M. (2014) One-pot occurrence of two polymorphs of Rb2Sc[Si4O10]F and their structural, spectroscopic and computational characterization. Journal of Solid State Chemistry, 220, 7990.CrossRefGoogle Scholar
Kartashov, P.M. (1994) Narsarsukite from fenitized rocks of Lovozero massif. Proceedings of the Russian Mineralogy Society, 4, 5866 [in Russian].Google Scholar
Kolitsch, U. and Tillmanns, E. (2004) The structural relation between the new synthetic silicate K2ScFSi4O10 and narsarsukite, Na2(Ti,Fe3+)(O,F) Si4O10 . European Journal of Mineralogy, 16, 143149.CrossRefGoogle Scholar
Kuznicki, S.M., Bell, V.A., Nair, S., Hillhouse, H.W., Jacubinas, R.M., Braunbarth, C.M., Toby, B.H. and Tsapatsis, M. (2001) A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature, 412, 720724.CrossRefGoogle ScholarPubMed
Lacalamita, M., Mesto, E., Scordari, F. and Schingaro, E. (2012) Chemical and structural study of 1M- and 2M1-phlogopites coexisting in the same Kasenyi kamafu-gitic rocks (SW Uganda). Physics and Chemistry of Minerals, 39, 601611.CrossRefGoogle Scholar
Lacalamita, M., Mesto, E., Kaneva, E., Scordari, F., Pedrazzi, G., Valdykin, N. and Schingaro, E. (2017) Structure refinement and crystal chemistry of tokkoite and tinaksite from Murun massif (Russia). Mineralogical Magazine, 81, 251272.CrossRefGoogle Scholar
Liebau, E (2012) Structural Chemistry of Silicates: Structure, Bonding, and Classification. Springer, New York.Google Scholar
Matsueda, H., Miura, Y and Rucklidge, J. (1981) Natroapophyllite, a new orthorhombic sodium analog of apophyllite I. Description, occurrence, and nomenclature. American Mineralogist, 66, 410–123.Google Scholar
Mesto, E., Kaneva, E., Schingaro, E., Vladykin, N., Lacalamita, M. and Scordari, F (2014) Armstrongite from Khan Bogdo (Mongolia): Crystal structure determination and implications for zeolite-like cation exchange properties. American Mineralogist, 99, 24242432.CrossRefGoogle Scholar
Nikitin, A.V. and Belov, N.V. (1962) The crystal structure of batisite, Na2BaTi2Si4O14 = Na2BaTi2O2[Si4O12]. Doklady Akademii Nauk USSR, 146, 142143.Google Scholar
Peacor, D.R. and Buerger, M.J. (1962) The determination and refinement of the structure of narsarsukite, Na2TiOSi4O10 . American Mineralogist, 47, 539556.Google Scholar
Pyatenko, Y.A. and Pudovkina, Z.V. (1960) Crystal structure of narsarsukite. Soviet Physics, Crystallography, 5, 540548.Google Scholar
Rajasekaran, K.C. (1966) Narsarsukite from Mont St. Hilaire, Quebec, Canada. The Canadian Mineralogist, 8, 506514.Google Scholar
Read, A.J. (1991) Narsarsukite from Mayor Island, New Zealand. New Zealand Journal of Geology and Geophysics, 34, 337340.CrossRefGoogle Scholar
Rocha, J. and Anderson, M.W. (2000) Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. European Journal of Inorganic Chemistry, 2000, 801818.3.0.CO;2-E>CrossRefGoogle Scholar
Rozhdestvenskaya, I.V. and Krivovichev, S.V. (2011) Tubular chains in the structures of natural and synthetic silicates. Crystallography Reports, 56, 10071018.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) XPREP, version 2008/2. Bruker-AXS, Madison, Wisconsin, USA.Google Scholar
Shirinova, A.F., Ragimov, K.G. and Chiragov, M.I. (2007) Crystallochemistry of silicates and alumosilicates with (Si, Al)—O tubular radicals. Baki Universitetinin Xəbərləri, 3, 102111.Google Scholar
Shirley, D.A. (1972) High-resolution X-ray photoemis-sion spectrum of the valence bands of gold. Physical Review, B5, 4709–714.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V. and Depmeier, W. (2009) Crystal structure of Pb6O[(Si6Al2)O20]. Glass Physics and Chemistry, 35, 406410.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of silicate minerals with chains of [TiO6] octahedra. The Canadian Mineralogist, 42, 807824.CrossRefGoogle Scholar
Sokolova, E., Hawthorne, F.C., Ball, N.A., Mitchell, R.H. and Della Ventura, G. (2006) Vlasovite, Na2Zr (Si4O11), from the Kipawa alkaline complex, Quebec, Canada: Crystal-structure refinement and infrared spectroscopy. The Canadian Mineralogist, 44, 13491356.CrossRefGoogle Scholar
Stewart, D.B. (1959) Narsarsukite from Sage Creek, Sweetgrass Hills, Montana. American Mineralogist, 44, 265273.Google Scholar
Su, Y and Balmer, M.L. (2000) Raman spectroscopic studies of silicotitanates. Journal of Physical Chemistry B, 104, 81608169.CrossRefGoogle Scholar
Taylor, M. and Brown, G.E. (1976) High-temperature structural study of the Ylxla<r*A2la phase transition in synthetic titanite, CaTiSiO5 . American Mineralogist, 61, 435–47.Google Scholar
Upton, B.G., Macdonald, R., Hill, P.G., Jefferies, B. and Ford, C.E. (1976) Narsarsukite: a new occurrence in peralkaline trachyte, south Greenland. Mineralogical Magazine, 40, 737746.CrossRefGoogle Scholar
Uvarova, Y.A., Sokolova, E., Hawthorne, EC, Liferovich, R.P. and Mitchell, R.H. (2003) The crystal chemistry of shcherbakovite from the Khibina massif, Kola Peninsula, Russia. The Canadian Mineralogist, 41, 11931201.CrossRefGoogle Scholar
Vladykin, N.V (2009) Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves. Russian Geology and Geophysics, 50, 11191128.CrossRefGoogle Scholar
Vladykin, N.V. (2016) Genesis and crystallization of ultramafic alkaline carbonatite magmas of Siberia: ore potential, mantle sources, and relationship with plume activity. Russian Geology and Geophysics, 57, 889905.CrossRefGoogle Scholar
Vlasov, K.A., Kuz'menko, M.Z. and Es'kova, E.M. (1966) The Lovozero alkali massif. [Transl. from U.S.S.R. Acad. Sci. Press, Moscow, 1959], Oliver & Boyd, Edinburgh.Google Scholar
Wagner, C., Parodi, G.C., Semet, M., Robert, J.-L., Berrahma, M. and Velde, D. (1991) Crystal chemistry of narsarsukite. European Journal of Mineralogy, 3, 575585.CrossRefGoogle Scholar
Warren, B.E. and Amberg, C.R. (1934) X-ray study of narsarsukite, Na2(Ti,Fe)Si4O11. American Mineralogist, 19, 546548.Google Scholar