Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-02-26T14:34:10.733Z Has data issue: false hasContentIssue false

Investigation of wettability and moisture sorption property of electrospun poly(N-isopropylacrylamide) nanofibers

Published online by Cambridge University Press:  24 February 2016

Anupama Sargur Ranganath
Affiliation:
Division of Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore - 487372.
V. Anand Ganesh
Affiliation:
Division of Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore - 487372.
Kostiantyn Sopiha
Affiliation:
Division of Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore - 487372.
Rahul Sahay
Affiliation:
Division of Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore - 487372.
Avinash Baji*
Affiliation:
Division of Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore - 487372.
*
*Corresponding Author: Avinash_Baji@sutd.edu.sg
Get access

Abstract

Poly(N-isopropylacrylamide) (PNIPAM) has been used extensively for numerous biomedical applications. However, there is not enough information in the literature on the wettability and hygroscopic properties of electrospun PNIPAM fibers, relevant for water harvesting applications. This study focuses on investigating the wettability and hygroscopic properties of electrospun PNIPAM fibers at room temperature and elevated temperature. The wettability properties of electrospun PNIPAM fibers were compared to spin-coated PNIPAM thin films. The wettability properties of the electrospun fibers were enhanced by 56% compared to spin-coated films. Water contact angle (WCA) measured on electrospun fibers was determined to be 137° at elevated temperatures while WCA on spin cast PNIPAM film was determined to be 81° at elevated temperatures. Furthermore, hygroscopic properties of the electrospun PNIPAM fibers were studied using thermogravimetric analysis (TGA). The PNIPAM fibers are seen to exhibit moisture absorption capacity of about 16.6 wt. % under humid conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mura, S., Nicolas, J., Couvreur, P., Nat. mat. 12, 9911003 (2013).Google Scholar
Ganesh, V. A., Baji, A., Ramakrishna, S., RSC Adv. 4, 5335253364 (2014).CrossRefGoogle Scholar
Schild, H. G., Prog. Polym. Sci. 17, 163249 (1992).Google Scholar
Rockwood, D. N., Chase, D. B., Akins, R. E., Rabolt, J. F., Polymer, 49 40254032 (2008).Google Scholar
Chen, M., Dong, M., Havelund, R., Regina, V. R., Meyer, R. L., Besenbacher, F., Kingshott, P., Chem. Mater. 22, 42144221 (2010).CrossRefGoogle Scholar
Song, F., Wang, X. L., Wang, Y. Z., Eur. Polym. J. 47, 18851892 (2011).CrossRefGoogle Scholar
Baji, A., Abtahi, M., Ramakrishna, S., J. Nanosci. Nanotechno. 14, 47814798 (2014).Google Scholar
Ganesh, V. A., Ranganath, A. S., Sridhar, R., Raut, H. K., Jayaraman, S., Sahay, R., Ramakrishna, S., Baji, A., Macromol. Rapid Commun. 36, 13681373 (2015).CrossRefGoogle Scholar
Morris, C., Szczupak, B., Klymchenko, A. S. and Ryder, A. G., Macromolecules, 43(22), 94889494 (2010).Google Scholar
Liu, X., Li, Y., Hu, J., Jiao, J., Li, J., RSC Adv. 4 6369163695 (2014).Google Scholar
Okuzaki, H., Kobayashi, K., Yan, H., Synth. Met. 159, 22732276 (2009).Google Scholar
Reneker, D. H., Chun, I., Nanotechnology, 7, 216 (1996).Google Scholar
Yarin, A., Koombhongse, S., Reneker, D. H., J. Appl. Phys 89, 30183026 (2001).Google Scholar
Yarin, A., Koombhongse, S., Reneker, D. H., J. Appl. Phys 90, 48364846 (2001).Google Scholar
Keerl, M., Smirnovas, V., Winter, R., Richtering, W., Angew. Chem. Int. Ed. Engl. 120 344347 (2008).Google Scholar
Chen, L., Liu, M., Lin, L., Zhang, T., Ma, J., Song, Y., Jiang, L., Soft Matter, 6 27082712 (2010).Google Scholar
Jiang, L., Zhao, Y., Zhai, J., Angew. Chem. Int. Ed. 116, 44384441 (2004).CrossRefGoogle Scholar
Quéré, D., Lafuma, A., Bico, J., Nanotechnology, 14 1109 (2003).Google Scholar
Wenzel, R. N., Ind. Eng. Chem. 28 988994 (1936).CrossRefGoogle Scholar
Sas, I., Gorga, R. E., Joines, J. A., Thoney, K. A., J. Polym. Sc. Part B: Polym. Phys. 50 824845 (2012).Google Scholar
Ganesh, V. A., Nair, A. S., Raut, H. K., Tan, T. T., He, C., Ramakrishna, S., Xu, J., J. Mater. Chem. 22, 1847918485 (2012).CrossRefGoogle Scholar
Byun, J., Shin, J., Kwon, S., Jang, S., Kim, J. K., Chem. Commun. 48, 92789280 (2012).Google Scholar
Morton, W. E., Hearle, J. W. S., Physical Properties of Textile Fibres, Textile Institute, 8 th edition, 241-273 (2008).Google Scholar
Nordon, P., David, H., Int. J. Heat Mass Transfer, 10 853866 (1967).CrossRefGoogle Scholar
Li, Y., Luo, Z. X., J. Text. Inst. 91, 302316 (2000).CrossRefGoogle Scholar