Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T15:05:13.831Z Has data issue: false hasContentIssue false

Quasi Crystal Al (1xxx)/Carbonised Coconut Shell Nanoparticles: Synthesis and Characterisation

Published online by Cambridge University Press:  17 April 2018

Sefiu A. Bello*
Affiliation:
Department of Materials Science and Engineering, Kwara State University, Malete, Nigeria Department of Metallurgical and Materials Engineering, University of Lagos, LagosNigeria
Johnson O. Agunsoye
Affiliation:
Department of Metallurgical and Materials Engineering, University of Lagos, LagosNigeria
Jeleel A. Adebisi
Affiliation:
Department of Metallurgical and Materials Engineering, University of Lagos, LagosNigeria Department of Metallurgical and Materials Engineering, University of Ilorin, IlorinNigeria
Funsho O. Kolawole
Affiliation:
Department of Metallurgical and Materials Engineering, University of Lagos, LagosNigeria Department of Metallurgical and Materials Engineering, Federal University of Oye-Ekiti, Nigeria
Nasirudeen K. Raji
Affiliation:
Department of Metallurgical Engineering, Yaba College of Technology, Lagos, Nigeria
Suleiman B. Hassan
Affiliation:
Department of Metallurgical and Materials Engineering, University of Lagos, LagosNigeria
Get access

Abstract

A novel synthesis of Al (1xxx)/carbonised coconut shell (CCS) nanoparticles using a ball milling technique was investigated. Initial Al/0.1%CCS powders of an average size of 51.06μm was milled for a period of 70 h. The milled particles at 16, 46 and 70 h were characterized using X-ray diffractomer (XRD), scanning electron microscope (SEM), transmission electron microscope and UV-Vis spectrophotometer. Result revealed that the calculated particle crystallite size from XRD aided with Scherrer’s equation is consistent with particle image sizes obtained from SEM aided with software. TEM image depicted variation in orientation and appearance of the Al 1xxx/0.1% CCS nanoparticles at different milling time. The wide variation in the particle size is attributable to different ball impacts on the individual powders during the ball milling process. Increased maximum absorbance observed with the milled particles when compared with the initial powders is an indication of quantum/nanosizing effect due to ball milling.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lowndes, D. H., “Nanoscale Science, Engineering and Technology Research Directions”, n,d) pp. 1–82.Google Scholar
Pokropivny, V., Lohmus, R., Hussainova, I., Pokropivny, A., Vlassov, S., “Introduction to Nanomaterials and Nanotechnology”, (Tartu University Press, 2007) pp. 192.Google Scholar
Gers, R., Climent, E., Legendre, D., Anne-Archard, D., Frances, C., Chemical Engineering Science. 65, pp. 20522064 (2010).CrossRefGoogle Scholar
Hanna, W., Maung, K., El-Danaf, E. A., Almajid, A. A., Soliman, M. S., Mohamed, F. A., Advances in Materials Science and Engineering. 2014, pp. 19 (2014).CrossRefGoogle Scholar
Jallo, L. J., Schoenitz, M., Dreizin, E. L., Dave, R. N., Johnson, C. E., Powder Technology. 204, pp. 6370 (2010).CrossRefGoogle Scholar
Knieke, C., Steinborn, C., Romeis, S., Peukert, W., Breitung-Faes, S., Kwade, A., Chemical Engineering & Technology. 33, pp. 14011411 (2010).CrossRefGoogle Scholar
Li, G., Fan, Y., Zheng, Y., Wu, Y., Ceramics International. 36, pp. 20252031 (2010).CrossRefGoogle Scholar
Mazaheri, Y., Karimzadeh, F., Enayati, M. H., Materials Sciences and Applications. 01, pp. 217222 (2010).CrossRefGoogle Scholar
Mohamed, F. A., Acta Materialia. 51, pp. 41074119 (2003).CrossRefGoogle Scholar
Prasad Yadav, T., Manohar Yadav, R., Pratap Singh, D., Nanoscience and Nanotechnology. 2, pp. 2248 (2012).CrossRefGoogle Scholar
Shonhiwa, A., Herrmann, M., Sigalas, I., Coville, N., Ceramics International. 35, pp. 909911 (2009).CrossRefGoogle Scholar
Sommer, M., Stenger, F., Peukert, W., Wagner, N. J., Chemical Engineering Science. 61, pp. 135148 (2006).CrossRefGoogle Scholar
Stenger, F., Mende, S., Schwedes, J., Peukert, W., Chemical Engineering Science. 60, pp. 45574565 (2005).CrossRefGoogle Scholar
Varol, T., Canakci, A., Yalcin, E. D., Arabian Journal for Science and Engineering. 42, pp. 17511764 (2016).CrossRefGoogle Scholar
Bello, S. A., Agunsoye, J. O., Hassan, S. B., Materials Letters. 159, pp. 514519 (2015).CrossRefGoogle Scholar
Bello, S. A., Hassan, S. B., Agunsoye, J. O., Kana, M. G. Z., R. I. A, Tribology in Industry. 37, pp. 257263 (2015).Google Scholar
Benjamin, J. S., Scientific American. 234,, pp. 4049 (1976).CrossRefGoogle Scholar
Metal, B. J. S powder report. 45, pp. 122127 (1990).Google Scholar
Liu, T., Shen, H., Wang, C., Chou, W., Progress in Natural Science: Materials International. 23, pp. 434439 (2013).CrossRefGoogle Scholar
Mankosa, M. J., Adel, G. T., Yoon, R. H., Powder Technology. 49, pp. 7582 (1986).CrossRefGoogle Scholar
Maurice, D. R., Courtney, T. H., Met Trans A. 21, pp. 289303 (1990).CrossRefGoogle Scholar
Wolff, M. F. H., Antonyuk, S., Heinrich, S., Schneider, G. A., Particuology. 17, pp. 9296 (2014).CrossRefGoogle Scholar
Yang, F., Yan, G., Wang, Q. Y., Xiong, X. M., Li, S. Q., liu, G. Q., ... Zhang, P. X., Physics Procedia. 65, pp. 157160 (2015).CrossRefGoogle Scholar
Zhang, S., Liu, J., Feng, J., Li, C., Ma, X., Zhang, P., Journal of Materiomics. 1, pp. 118123 (2015).CrossRefGoogle Scholar
Jafar, H. I., Ali, N. A., Shawky, A., Journal of Al-Nahrain University. 14, pp. 7782 (2011).CrossRefGoogle Scholar
Jianwen, X., Moon, K.-S., Tison, C., Wong, C. P., IEEE Taransaction and Advanced Packaging. 29, pp. 295306 (2006).Google Scholar
Agunsoye, J. O., Talabi, S. I., Bello, S. A., Awe, I. O., Tribology in Industry. 36, pp. 155162 (2014).Google Scholar
Bello, S. A., Agunsoye, J. O., Adebisi, J. A., Anyanwu, J. E., Bamigbaiye, A. A., Hassan, S. B., Annals of Faculty of Engineering. 15, pp. 149157 (2017).Google Scholar
Bello, S. A., Agunsoye, J. O., Adebisi, J. A., Suleiman, B. H., Acta Periodica Technological. 48, pp. 2538 (2017).CrossRefGoogle Scholar
Hassan, S. B., Agunsoye, J. O., Bello, S. A., Industrial Engineering Letters. 5, pp. 2227 (2015).Google Scholar
Bello, S. A., “Development and Characterisation of Epoxy-Aluminium-Coconut shell Particulate Hybrid Nanocomposites for Automobile Applications”, (University of Lagos 2017) pp. i-xlv, 571.Google Scholar
Tcherdyntsev, V. V., D, K. S., I, S. A., A, T. I., M, K. A., Journal of Non-Crystalline Solids. 312–314, pp. 522526 (2002).CrossRefGoogle Scholar
Kaminski, C. F., “Analytical Chemistry, 8 lectures, Michaelmas Term 2013,” (Chemical Engineering Section. ,2013).Google Scholar